
An Efficient Update Management Mechanism for
Clustered Query Result Caching Systems at

Database-driven Web sites

Seunglak Choi Sekyung Huh Su Myeon Kim
Junehwa Song Yoon-Joon Lee

CS/TR-CS-TR-2005-238

May 24, 2005

K A I S T
Department of Computer Science

Abstract. A key problem in using caching technology for dynamic con-
tents lies in update management. An update management scheme should
be very efficient without imposing much extra burden to the system,
especially to the original database server. We propose an efficient up-
date management mechanism for query result caching in database-backed
Web sites. Our method instantly processes each update and invalidates
affected query results in the cache. The cache takes in charge of the up-
date management process, and minimizes the overhead imposed to the
database server. In addition, the mechanism employees a two-phase con-
sistency checking method, which prunes out unaffected queries at the
earliest possible moment. The method scales well with a high number of
cached instances. As it minimizes the overhead to database servers, it
also scales well up with the number of cache nodes in a system. Thus, it
provides a scalable framework of update management for a multi-node
or clustered cache architecture.

1 Introduction

With the rapid expansion of the Internet, lots of interesting and value-generating
services, e.g., e-commerce, are now provided through WWW. Mostly, those ser-
vices are provided through Web contents which are dynamically constructed
upon users’ requests, and the systems providing such services are in many cases
composed of multi-tier system components, e.g., Web servers, Web application
servers (WASs), and database servers, etc. Thus, the generation and delivery
of a Web content involves a long costly sequence of operations through mul-
tiple system components, resulting in serious overhead to the system. To ease
performance problem of such Web sites, many attempts have been made, and
among them, caching [17] and clustering [9] have been quite successful in serv-
ing pre-generated html contents. However, related technologies are still limited
in serving dynamically generated contents.

The key problem in using caching technology for dynamic contents lies in up-
date management; that is, cached contents should be ensured consistent to the
original data in databases. Thus, an effective update management mechanism is
of utmost importance for dynamic content caching. Moreover, an update man-
agement scheme should be very efficient without imposing much extra burden
to the system, especially to the origin database server. Note that the database
server can be easily a bottleneck to overall Web site’s performance. Thus, if not
efficient, the advantage of using the cache will be significantly impaired due to
the extra overhead to keep the freshness of the cached data.

In this paper, we propose an efficient update management mechanism for
dynamic content caching, more specifically, for query result caching [7, 14, 20,
3] in database-driven Web sites. The idea of query result caching is to store
results of frequently-issued queries and reuse the results to obtain the results
of subsequent queries, significantly saving computational cost to process queries
and retrieve results. Our method, upon reception of an update request, instantly
processes the update and invalidates affected query results in the cache. In doing

so, the cache initiates and takes in charge of the update management process,
and minimizes the involvement of the database server. In other reported update
management schemes [5, 4, 2], the servers are heavily responsible for the overall
update process. In addition, our mechanism employees a two-phase consistency
checking method in which the expensive part, i.e., join checking, is performed
only once to a group of queries. In this fashion, the method prunes out unaffected
queries at the earliest possible moment. Thus, the method scales well with a high
number of cached instances. The number of query instances can be very high
especially for range queries. In addition, as it minimizes the overhead to database
servers, it also scales well up with the number of cache nodes in a system. Thus,
it provides a scalable framework of update management for a multi-node or
clustered cache architecture.

The two-phase method is effective because in many Web-based applications
a lot of query results share the same query format [14], and hence, have the same
join condition. This two-phase method is applied in a multi-node or clustered
architecture as well. In that case, the join check is performed in only one node,
which broadcasts the result to the whole system. Thus, the overhead of consis-
tency check incurred to the database server is identical regardless of the number
of cache nodes in the system.

The proposed mechanism ensures strong consistency. It is done by invali-
dating affected query results before the completion (i.e., commit) of a database
update. After the completion, the cache serves up-to-date data by obtaining
them from the origin database. It is often critical to serve up-to-date contents
(e.g. the price of products in on-line shopping sites).

Additionally, our method supports transparent deployment; as we design
and build an invalidation module in a cache system, it is not necessary to install
additional modules in application/database servers. Our invalidation module
requires that update queries go though a cache. Recently, Web contents in many
large-scale sites are managed by Web-based content management systems. In
these sites, the updates to Web contents are generated in a WAS and thus are
delivered to a cache. Therefore, our mechanism is practically valid.

This paper is organized as follows. In section 2, we introduce background
knowledge. In section 3, we describe the cache consistency mechanism. In section
4, we suggest the issues occurred in clustered cache nodes and their solutions. In
section 5, we evaluate and analyze the performance of the mechanism. In section
6, we describe related work. Finally in section 7, we present conclusions.

2 Preliminaries

In this section, we describe the typical configuration of query result caching
systems on which the proposed mechanism is deployed. We then introduce a
characteristic of the database queries frequently used in most Web-based appli-
cations. The characteristic is utilized by our mechanism.

Dispatcher

App.
Server

Web
Server

HTTP requests

App.
Server

Web
Server

App.
Server

Web
Server

App.
Server

Web
Server

Dispatcher

Caching
Server

Caching
Server

Caching
Server

Caching
Server

DBMS

Fig. 1. The configuration of the Web sites adopting the query result caching systems

2.1 Configuration of Query Result Caching Systems

The caching system processes queries delivered from front-side WASs on be-
half of a database server. It is located between WASs and a database server. For
large-scale Web sites, the clustering technology is frequently applied to the cache
systems as shown in Figure 1. The clustering improves total uptime (availabil-
ity) and ability of adding resources to support more queries (scalability). In the
clustering, it is important to equally distribute the amount of load to all cache
nodes. A dispatcher (e.g., L4 switch) ensures the uniform distribution among
caches. It is installed between WASs and cache nodes. The dispatcher period-
ically monitors the current loads of the cache nodes. When receiving a query
from a WAS, it redirects the query to the cache node with the lowest load. The
dispatcher is also used to distribute HTML requests among Web servers and
WASs.

2.2 Query Templates and Query Instances

In Web-based applications, a user usually submits a request by using a HTML
form. Figure 2 shows a simple example. A user types a search keyword and clicks
the submit button in the form. Then, a WAS generates a query from the form
and sends it to a database server. The generation of the query is done as encoded
in the applications. Thus, each HTML form can be translated to a template of

SELECT I_TITLE, I_ID, A_FNAME, A_LNAME
FROM ITEM, AUTHOR
WHERE I_A_ID = A_ID
AND A_LNAME = '@keyword'

Fig. 2. HTML form and its corresponding query form. The HTML form is clipped
from the Search Request Web page of the TPC-W benchmark [19].

queries through the encoding. We call such a template a query template. The
queries generated from the same HTML form, i.e., from the same query template
are of the same form; they share the same projection attributes, base tables, and
join conditions. The only difference among the queries lies in their selection
regions, which are specified by users. We call the individual queries generated
upon user’s requests query instances.

We characterize a query template QT as follows:

QT = (T, PA, JC)

– T is a set of tables which are specified in a FROM clause.
– PA is a set of projection attributes.
– JC is a set of join conditions.

T (QT), PA(QT), and JC(QT) denotes T, PA, and JC of a query template
QT respectively. Given a query template QT , we define a query group of the
template as QG(QT) = {Qi} where Qi is generated from QT . A query instance
Qi is said to be affected by an update if Qi is modified by the update.

3 Cache Consistency Mechanism

3.1 Architectural Overview

Under the proposed mechanism, a caching system conceptually consists of the
Consistency Maintainer (CM) and the Read-Query Processor (RQP) (see Fig-
ure 3). CM performs the consistency check to identify query results affected by
a given update and invalidates affected results. RQP is a main component of the
caching system, which stores query results and serves read queries. RPQ main-
tains meta information about query templates and instances stored in a cache.

(1)

Web Server &
Web Applicatoin Server (WAS)

Application Interface(JDBC/ODBC for the Cache)

DBMS

Query Result Caching System

Consistency
Maintainer (CM)

(2)

(3)

Read-Query
Processor (RQP)

(5)

(6)

(4)

Fig. 3. Processing Flow

RPQ incrementally adds meta information on a new query template whenever
encountering a new kind of a query. The meta information is used by CM for
the consistency check.

Figure 3 depicts the processing flow of the consistency check. A WAS sends
an update query to CM (1). CM forwards the update to the origin database
server (2). In order to find the templates which can include the query instances
affected by the update, CM investigates query template information kept in
RPQ (3) and sends to the database server a join check query (4), which will be
discussed in detail in section 3.2. Once the templates are determined, CM finds
affected query instances in the templates (5) and removes them from the cache
(6).

The following is the characteristics of the proposed mechanism.

– Cache-driven Consistency Maintenance. One of our design goals is to pro-
vide a consistency mechanism which can be easily deployed without much
modification to existing Web sites. Thus, we would like to have the entire
process of the consistency maintenance performed by the cache. As shown in
Figure 3, the cache detects update queries, performs the consistency check,
and invalidates affected query results.

– Invalidation-every-update. Upon receiving an update query, a cache imme-
diately invalidates query results affected by the update. The invalidation is
performed before the commit of the update in a database server. This policy
ensures the strong consistency between cached query results and their cor-
responding origin data. Other alternative to ensure the strong consistency

is polling-every-read. Upon receiving a read query, this scheme performs the
consistency check over the corresponding query results of the query. The
scheme is not efficient in most Web sites where read queries are much more
frequently issued than updates.

3.2 Two-phase consistency check

Consistency check is to test if there exist any query instances which are affected
by an update. This involves repeated matching of each query instance against
a given update, and thus costs serious computation overhead. We identify that
there are many computation steps which are repeated in testing different in-
stances. To avoid such repetition, we propose a two-phase consistency checking
mechanism. We note that different query instances generated from the same
query template differ only in their selection regions. Thus, during the first step
called template check, we match the query template against the update and
identifies if it is possible that any of the query instances from the template are
affected by the update. Then, during the second step, called instance check,
individual instances are matched against the update.

The template check determines whether a given update may affect a set of
query instances generated from a query template. This test checks a necessary
condition; if a query template QT fails the test, none of the query instances gen-
erated from QT are affected. The template check examines projection attributes,
base tables, and join conditions of templates. If a template passes the test, it is
possible that some of the query instances are affected by the update. Thus, we
match each instance to the update. In this step, only the selection region of each
instance is matched against that of the update.

This two-phase consistency check is a scalable solution saving much of compu-
tation overhead. It performs a join condition check only once over each template.
Note that join check is the most expensive step. It requires communication with
and some computation in a database server.

Template Check The following three conditions are satisfied, if U affects any
query instances in QG(QT).

1. If a set of attributes modified by U intersects PA(QT). Note that, for INSERT
and DELETE, this condition is always true. These queries insert or delete an
entire tuple.

2. If a table on which U is performed is included in T (QT).
3. If one or more newly inserted tuples by U satisfy JC(QT). If QT has join

conditions, query instances generated from QT include only joined tuples.
Thus, only when the inserted tuples are joined, U can affects the query
instances.

Example 1. Let us consider a query template QT , a query instance Q, and an
update U as follows. Q is generated from QT .

QT : T = {ITEM, AUTHOR}
PA = {I TITLE, I COST, A FNAME}
JC = {I A ID = A ID}

Q : SELECT I TITLE, I COST, A FNAME
FROM ITEM, AUTHOR
WHERE I A ID = A ID
AND I PUBLISHER = ‘McGrowHill’

U : INSERT INTO ITEM
(I ID, I A ID, I TITLE, I PUBLISHER

VALUES
(30, 100, ‘XML’, ‘McGrowHill’)

The conditions (1) and (2) are easily evaluated as trues. U modifies the projection
attribute I TITLE and the table ITEM. For checking the condition (3), a cache
sends to a database server a join check query as shown in the example 2. This
query examines whether the table AUTHOR has the tuples which can be joined
with the tuple inserted by U . Because the join attribute value of the inserted
tuple is 100, the join check query finds the tuples with A ID = 100. If the result
of the query is not null, we know that the inserted tuple is joined.

Example 2. Let us reconsider the update u and the template QT from the ex-
ample 1. In order to determine whether u satisfies the join condition of QT in
the example 1, the following join check query is sent to a database server.

SELECT A ID FROM AUTHOR WHERE AUTHOR.A ID = 100

As described in the example 1, the join check requires the query processing of
a database server. The two-phase consistency check performs the join check over
each query template, not each query instance. Thus, it dramatically decreases
the overhead to a database server.

We further reduce the overhead by observing the type of each update query.
This is an advantage over [4], which finds queries affected by a set of updates.
Thus, it cannot examine each update query. There are several cases where the
join check can be omitted. First, if an update is to delete tuples, the join check
can be skipped. All query results stored in a cache definitely satisfy their join
conditions. Thus, in the instance check, when the deleted tuples do not satisfy
the join conditions, there is no possibility to find any query results.

Second, if a referential integrity rule is applied to a join condition, a database
server examines whether the newly inserted tuples are joined. In the example 1,
assume that the referential integrity has been applied to the join condition I A ID
= A ID. If an update query tries to insert into ITEM the tuples that are not joined
with tuples of AUTHOR, a database server denies the update. A cache terminates
the process of the consistency check to the denied update.

Third, if an update is to modify the values of non-join attributes, it is in-
tuitively obvious that the join check is needless. If an update is to modify the

values of join attributes, a cache treats the update as deleting the tuples with
the old values and inserting the tuples with the new values. As mentioned above,
for the deletion, the join check is not needed. Thus, a cache performs the join
check only over the new values.

Instance Check Once a template passed the template check, the query in-
stance check is applied to the template. It finds the affected query instances by
comparing the selection region of an update query to those of query instances.
If the selection region of a query instance overlaps that of an update query, we
know that the query instance is affected by the update. In the example 1, the
query instance Q is affected by the update U because the selection region of Q,
I PUBLISHER=‘McGrowHill’, is equal to that of U .

A cache can quickly find affected query instances by using an index. The
query result caching system usually includes an index to speed up searching for
the query results matching an incoming query. It indexes query results by their
selection regions. For more detailed information on the index, refer to [7].

If the domain of an update selection region and that of a query selection
region are different, the selection region check is impossible. In the example 3,
the domain of the update U (i.e., I COST) is different from that of Q (i.e.,
I PUBLISHER). Our solution to this problem is to retrieve the values of I PUBLISHER
of the deleted tuples before sending the update u. Now, a cache can compare
the retrieved values to the selection regions of query instances.

Example 3. Given a query instance Q and an update U as follows,

Q : SELECT I TITLE, I COST, A FNAME
FROM ITEM, AUTHOR
WHERE I A ID = A ID
AND I PUBLISHER = ‘McGrowHill’

U : DELETE ITEM WHERE I COST < 1000

the instance check cannot be directly performed due to the different domains of
their selection regions.

4 Issues in Clustered Cache Nodes

In this section, we discuss a couple of issues occurred in clustering caches and
show our solutions.

4.1 Overhead of Join Checks

With multiple cache nodes, an origin database server would be easily overloaded
due to multiple issues of join check queries. Different cache nodes may have
different template information. Imagine that one cache node has encountered a
query generated from a new query template QT , and the other node has not

(1)

Web Server &
Web Applicatoin Server (WAS)

Application Interface(JDBC/ODBC for the Cache)

DBMS

Cache node A

(2)

(5')

RQP

CM

(3) (5)

RQP

CM

Cache node B

Dispatcher

(4)

Fig. 4. Template check at a single node

received a query generated from QT . Therefore, nodes must issue their own
join check queries to the database server. The overhead to the database server
restricts the maximum number of nodes, i.e., the scalability of a cache cluster.

To address this problem, we designed cache nodes to share the same template
information. Under this situation, only one cache node which has received an
update query performs the join check. Then, other nodes utilize the result. To
share the same template information with other nodes, each node broadcasts the
template information whenever encountering a new template. Other nodes then
insert the new template to its own information.

Figure 4 shows the processing flow of an update query when all caches have
the same template information. The cache node A receives an update query (1)
and forwards the update to the database server (2). Then, the node A investigates
local template information (3) and sends join check queries to the database server
and receives the results (4). If the result is not null, it performs the instance check
over its local cache (5) and simultaneously broadcasts the instance check request
to other cache nodes (5’). Other cache nodes will perform the instance check over
their own caches. We refer to this approach as the template check at a single node
(TCS).

4.2 Temporal Inconsistency of Template Information

Even with the broadcast mechanism, the template information may become
temporarily inconsistent among cache nodes. Figure 5 shows the situation. The

(3)

Web Server &
Web Applicatoin Server (WAS)

Application Interface(JDBC/ODBC for the Cache)

DBMS

Cache node A

(1)

RQP

CM

(2)

RQP

CM

Cache node B

Dispatcher

Fig. 5. A Case of template inconsistency among caches

node B receives a new kind of a read query (1), adds a new template information
and stores the result of the read query sent from a database server (2). Before
receiving the new template information from the node B, the node A receives
an update query which affects the read query (3). Because the node A does not
know the existence of the new template, it does not perform the template check
for the new template. Consequently, the result of the read query in the node B
becomes staled.

To resolve this problem, the node B invalidates all the query instances in the
templates that have not been checked by the node A. The node B determines the
unchecked templates by comparing local template information to that of the node
A. If a template of the node B is not included in the template information of the
node A, the template has not been checked. The node A broadcasts its template
information with the instance check request. Note that the invalidation will
rarely happen due to the small number of templates. The template inconsistency
occurs only when a new template is added.

5 Performance Evaluation

5.1 Experimental Setup

Performance Metrics We measured the update throughputs of the query
result caching system adopting the proposed mechanism. We sent update queries

Database
server

TPC-W
Database

Query
generator

Cache
cluster

Fig. 6. Experimental setup

to the caching system. For each update, the caching system forwards the update
query and sends join check queries to a database server. Under this situation, the
throughput is limited by the amount of processing these queries in the database
server.

Setup Figure 6 shows the setup for evaluating the proposed mechanism. We
used three kinds of machines: one for Query Generator, another for the caching
system and the third for the database server. The Query Generator emulates a
group of Web application servers, generating queries. It runs on a machine with
a Pentium III 800MHz, 256MB RAM. For the database server, we used Oracle 8i
with the default buffer pool size of 16MB. The database server runs on a machine
with a Pentium IV 1.5GHz, 512M RAM. The caching systems in the cluster run
on the machine with a Pentium III 1GHz, 512M RAM. We implemented the
proposed mechanism as a part of WDBAccel query result caching system [7].
All machines run Linux and are connected through a 100Mbps Ethernet.

Workloads We populated the database of the TPC-W benchmark in the database
server at 100K scale 1. The TPC-W benchmark [19] is an industrial standard
benchmark to evaluate the performance of database-driven Web sites. It models
an e-commerce site (specifically, an online bookstore) that is a representative,
common Web application. We used the update query modified from one used in
Admin Confirm Web page of TPC-W. The page includes a query which updates
non-join attributes of the table ITEM. As mentioned in section 3.2, for such an
update query, the join check is needless. Thus, we modified the query as follows.
This query inserts information on a book into ITEM. The values of the attribute
I ID follow the random distribution.

INSERT INTO ITEM
(I_ID, I_A_ID, I_COST, I_PUBLISHER)

VALUES
(@I_ID, @I_A_ID, @I_COST, ‘@I_PUBLISHER’)

1 In TPC-W, the scale of database is determined by the cardinality of ITEM table.

 0

 20

 40

 60

 80

 100

 50 100 150 200

up
da

te
 th

ro
ug

hp
ut

 (
qu

er
ie

s/
se

c)

of query instances

Two-phase Brute-force

Fig. 7. Update throughputs of a single cache node

5.2 Experimental Results

Throughput of Two-phase Consistency Check In order to determine the
performance improvement by the two-phase consistency check, we measured the
update throughputs of the two-phase check and the brute-force approach at
a single cache node. In the brute-force approach, the join check is performed
against individual query instances. (Note that in the two-phase check, the join
check is performed against a query template.)

Figure 7 shows the update throughputs as the number of query instances
ranging from 50 to 200. The figure shows that the throughputs of the two-phase
check are equal. This means that the two-phase check imposes the same overhead
on a database server regardless of how many query instances are. The amount
of overhead of the two-phase check will depend on only the number of query
templates. The two-phase check generates a join check query for each query
template.

Throughput of TCS Next, in order to identify the performance improvement
by the TCS, we measured the update throughputs of TCS and those of template
check at every node (TCE) at a cache cluster. In TCE, all cache nodes send a
join check query. Both approaches use the two-phase consistency check within
each cache node.

Figure 8 shows that the throughput of TCS does not change over the number
of cache nodes. This is due to the fact that only one join check query is sent
to a database server regardless of the number of nodes. On the contrary, the
throughput of TCE significantly degrades as the number of nodes increases.
When the cluster size is less than 5, throughputs of TCE is flat. This is because
the disk I/O cost of a database server dominates the throughput. The CPU cost
of a database server increases as the number of cache nodes. In the cluster sizes
more than 4, the CPU limits the throughput. The disk cost does not increase
due to a disk buffer.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

up
da

te
 th

ro
ug

hp
ut

 (
qu

er
ie

s/
se

c)

of cache nodes (%)

Two-phase
Brute-force

Without cache

Fig. 8. Update throughput of a cache cluster

The throughputs without the cache consistency check are also shown in the
figure. The degradation due to adopting the consistency check is about 10%.
This overhead comes from the processing of join check queries. The overhead
is inherent to the consistency maintenance. In TCS, the overhead stays fixed,
while the overhead becomes larger in TCE as the cluster size increases.

6 Related Work

Recently, several consistency mechanisms have been proposed. Challenger et
al. [6] proposed a solution in which application programs explicitly specify the
mapping between an underlying data item and cached results affected by its
update. At the time of writing, there exist various commercial caching prod-
ucts such as XCache [18] and SpiderCache [16]. They also provide consistency
frameworks, however, still require the manual mapping.

Candan et al. [5] proposed an automatic solution. It finds without the appli-
cation specifications (1) the mapping between cached results and queries used
for generating these results and (2) the mapping between the queries and the
underlying data that affect these queries. The invalidation-based approach was
proposed by Candan et al. [4]. This approach tried to invalidate queries affected
by updates as we did. The main difference from our mechanism is that it per-
forms the selection region check on a database server as well as the join check.
Thus, it incurs more overhead to a database server and the maintenance cost of
keeping the selection regions of cached query results in a database server. An-
other difference is that this approach focused on invalidating queries affected by
a set of updates. Our mechanism finds the queries affected by a single update.
Depending the type of each update, our approach omits the join check, thus
further reducing the overhead of consistency check.

Replication-based caching systems [3, 13, 15, 8] improve the performance of
database processing by distributing the workload into multiple cache nodes.
Those systems replicate a database into multiple nodes and distribute queries

among them. In these systems, the view maintenance techniques [12, 1, 10, 11]
are used for maintaining cache consistency. It propagates updates to cache nodes
immediately or periodically. Amiri et al. [2] proposed a filtering scheme that re-
duces update propagations to edge database caches. The filtering scheme exploits
the template-rich nature of Web applications, however, does not consider join
conditions of templates. For the query result caching systems, the view main-
tenance is avoided because it requires higher cost than invalidation. The view
maintenance should build the same consequences as an underlying data. On the
contrary, the invalidation just discards staled data.

7 Conclusions

In this paper, we proposed a update management mechanism for the query result
caching systems. We addressed three important requirements for the mechanism:
supporting strong consistency, enabling transparent deployment, and minimizing
the overhead of a database server for the scalability. The proposed mechanism
ensures strong consistency by invalidating affected query results before the com-
pletion of a database update. The mechanism is designed to be transparently
deployed by performing an entire process of consistency maintenance at a cache.
For the third requirement, we divided a consistency check to two phases, tem-
plate check and instance check. The template check is performed over a query
template, not individual instance. We also applied the mechanism to a cluster
of caches. We presented the experimental results that verify a high level of the
scalability of the mechanism.

References

1. D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek. Efficient view maintenance at
data warehouses. In Proceedings of ACM SIGMOD Conference, 1997.

2. Khalil Amiri, Sara Sprenkle, Renu Tewari, and Sriram Padmanabhan. Exploiting
templates to scale consistency maintenance in edge database caches. In Proceedings
of the International Workshop on Web Caching and Content Distribution, 2003.

3. Khalil S. Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan.
DBProxy: A self-managing edge-of-network data cache. In 19th IEEE Interna-
tional Conference on Data Engineering, 2003.

4. K. Selcuk Candan, Divyakant Agrawal, Wen-Syan Li, Oliver Po, and Wang-Pin
Hsiung. View invalidation for dynamic content caching in multitiered architectures.
In Proceedings of the 28th VLDB Conference, 2002.

5. K. Selcuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and Divyakant
Agrawal. Enabling dynamic content caching for database-driven web sites. In
Proceedings of ACM SIGMOD Conference, Santa Barbara, USA, 2001.

6. Jim Challenger, Arun Iyengar, Karen Witting, Cameron Ferstat, and Paul Reed.
A publishing system for efficiently creating dynamic web content. In Proceedings
of IEEE INFOCOM, 2000.

7. Seunglak Choi, Jinwon Lee, Su Myeon Kim, Sungjae Jo, Junehwa Song, and Yoon-
Joon Lee. Wdbaccel: A high-performance database server accelerator for database-
driven web sites. Under submission.

8. Oracle Corporation. Oracle9ias cache.
http://www.oracle.com/ip/deploy/ias/index.html?cache.html.

9. Om P. Damani, P. Emerald Chung, Yennun Huang, Chandra Kintala, and Yi-Min
Wang. ONE-IP: Techniques for hosting a service on a cluster of machines. In
Proceedings of the International World Wide Web Conference, 1997.

10. Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views:
Problems, techniques, and applications. IEEE Bulletin of the Technical Committee
on Data Engineering, 18(2), June 1995.

11. Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining
views incrementally. In Proceedings of ACM SIGMOD Conference, 1993.

12. Ki Yong Lee, Jin Hyun Son, and Myoung Ho Kim. Efficient incremental view
maintenance in data warehouses. In Conference on Information and Knowledge
Management, 2001.

13. Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid Pirahesh, Honguk Woo,
Bruce G. Lindsay, and Jeffrey F. Naughton. Middle-tier database caching for e-
business. In Proceedings of ACM SIGMOD Conference, 2002.

14. Qiong Luo and Jeffrey F. Naughton. Form-based proxy caching for database-backed
web sites. In Proceedings of the 27th VLDB Conference, Roma, Italy, 2001.

15. TimesTen Performance Software. Timesten library.
http://www.timesten.com/library/index.html.

16. Warp Solutions. SpiderCache technologies
http://www.warpsolutions.com/products/enterprise/indexent.htm.

17. Junehwa Song, Arun K. Iyengar, E. Levy-Abegnoli, and Daniel M. Dias. Archi-
tecture of a web server accelerator. Computer Networks, 38, January 2002.

18. XCache Technologies. XCache overview
http://www.xcache.com/home/default.asp?c=45&p=352.

19. Transaction Processing Performance Council (TPC). TPC benchmarkTMW (web
commerce) specification version 1.4. February 7, 2001.

20. Khaled Yagoub, Daniela Florescu, Valerie Issarny, and Patrick Valduriez. Caching
strategies for data-intensive web sites. In Proceedings of the 26th VLDB Confer-
ence, 2000.

