
Ganglia Cluster Toolkit
Brent Chun

Matt Massie

Ganglia (http://ganglia.sourceforge.net/) provides a complete real-time monitoring and execution
environment that is in use by hundreds of universities, private and government laboratories and
commercial cluster implementors around the world. Ganglia is as simple to install and use on a
16-node cluster as it is to use on a 512-node cluster as has been proven by its use on multiple 500+
node clusters.

Component Description Author Version

authd obtains and verifies
user credentials using
RSA public key
cryptography

Brent Chun 0.2.0

GEXEC cluster remote
execution system

Brent Chun 0.3.3

Monitoring Core the daemons and
utilities necessary to
monitor large clusters
in real-time

Matt Massie 2.3.1b4

Web PHP/RRD App a web interface for
viewing
(http://ganglia.mrcluster.org/)
data from the
monitoring core

Matt Massie 1.0.4

Python Class/Client a Python class for
sorting and classifying
large clusters using the
monitoring core

Greg Bruno 2.0

Ganglia grew out of UC Berkeley Computer Science clustering research: The Millennium Project
(http://www.millennium.berkeley.edu/) and it’s predecessor The NOW Project
(http://now.cs.berkeley.edu/).

Table of Contents
1. Introduction ...3

2. Ganglia Components..3

2.1. Components of the Ganglia Execution Environment...3
2.2. Components of the Ganglia Monitoring Core..4

3. Installing the Ganglia Components...11

3.1. Ganglia Execution Environment Installation...11
3.2. Ganglia Monitoring Core Installation..14
3.3. Installation of the Ganglia PHP/RRD Web Client...21

4. Using the Ganglia Components...24

4.1. Using GEXEC..24
4.2. Using the Ganglia Monitoring Core...26

5. Frequently Asked Questions..29

5.1. Execution Environment FAQ..30
5.2. Monitoring Core FAQ..30

6. Ganglia Applications..30

6.1. The Ganglia PHP/RRD Web Client...30
6.2. Greg Bruno’s Ganglia Python Class and Client...31

7. Getting Help ..31

8. Ganglia Monitor Core XML Specification ...31

9. ChangeLog...32

10. License..38

11. Special Thanks from Matt..38

12. History of Ganglia Monitoring Core ...39

1. Introduction
Ganglia (http://ganglia.sourceforge.net/) provides a complete real-time monitoring and execution environment that is
in use by hundreds of universities, private and government laboratories and commercial cluster implementors around
the world. Ganglia is as simple to install and use on a 16-node cluster as it is to use on a 512-node cluster as has been
proven by its use on multiple 500+ node clusters.

Ganglia was developed at the University of California, Berkeley Computer Science Division as way to link clusters
across the Berkeley campus together in a logical way. Since it was developed at a university, it is completely
open-source and has no proprietary components. All data is exchanged in well-defined XML and XDR to ensure
maximum extensibility and portability.

Ganglia is compromised of separate components that can work alone or together.The execution components(authd,
gexec, and pcp) can run stand-alone or plugged into the monitoring core. The execution system provides
high-performance tools for executing programs or manipulating files on your cluster. While, the execution core runs
only on Linux at this time, it has been written to be easily ported to other operating systems.

The monitoring core(gmond, gstat, gmetric) allows you to monitor any number of host metrics in real-time. At
present, the monitoring core runs on Linux, FreeBSD, Solaris, AIX, and IRIX.

Ganglia is not just a way to link nodes in a cluster together in a logical way but also a way to link clusters to other
clusters. Ganglia blurs the line between clustering and distributed computing by providing for C2C (Cluster to
Cluster) data exchanges which link disparate cluster resources together into a single logical framework.

2. Ganglia Components

2.1. Components of the Ganglia Execution Environment
Theofficial web pages for authd and GEXEC can be found at http://www.cs.berkeley.edu/~bnc/authd
(http://www.cs.berkeley.edu/~bnc/authd/) and http://www.cs.berkeley.edu/~bnc/gexec
(http://www.cs.berkeley.edu/~bnc/gexec/)

2.1.1. The authd system (authentication daemon)
From the authd author, Brent Chun

“Authd is a software package for obtaining and verifying user credentials which contain cryptographic signatures based on
RSA public key cryptography. It includes (i) a server (authd) for authenticating local users through Unix domain sockets and
process credentials and (ii) a client library (libauth.a) for requesting new credentials and verifying credentials signed by the
server. In the context of clusters, authd is typically used by installing a single cluster-wide RSA public/private key pair on all
nodes and running authd everywhere. Given this arrangement, client programs running on any node can obtain and present
timestamped credentials to cluster services which can then verify user identities using the cluster-wide public key.

3

Ganglia Cluster Toolkit

Compared to other approaches for authentication, authd’s scheme is attractive since it obviates the need for users to manage
their own public/private key pairs.”

2.1.2. The Ganglia Execution System (GEXEC)
From the GEXEC author, Brent Chun

“GEXEC is a scalable cluster remote execution system which provides fast, RSA authenticated remote execution of parallel
and distributed jobs. It provides transparent forwarding of stdin, stdout, stderr, and signals to and from remote processes,
provides local environment propagation, and is designed to be robust and to scale to systems over 1000 nodes. Internally,
GEXEC operates by building an n-ary tree of TCP sockets and threads between gexec daemons and propagating control
information up and down the tree. By using hierarchical control, GEXEC distributes both the work and resource usage
associated with massive amounts of parallelism across multiple nodes, thereby eliminating problems associated with single
node resource limits (e.g., limits on the number of file descriptors on front-end nodes). It consists of a daemon, a client
program, and a library which provides programmatic interface to the GEXEC system.”

2.2. Components of the Ganglia Monitoring Core

2.2.1. The Ganglia MONitoring Daemon (gmond)

The real workhorse of the ganglia monitoring system is the Ganglia MONitoring Daemon (gmond). Understanding
how gmond works on each node in your cluster is critical to seeing the "big picture" of how ganglia works. Gmond is
simply a single multi-threaded daemon which runs on each cluster node as user "nobody". Installation is as easy as
installing a single RPM.

You don’t have to have a common NFS filesystem or database, install special accounts, maintain configuration files
or other annoying hassles. Gmond is it’s own redundant, distributed database as you’ll see!

2.2.1.1. A Simple Introduction to Gmond

2.2.1.1.1. Gmond is a Good Listener and Polite Conversationalist

The gmonds running on each node have four main responsibilities:monitorchanges in the host state,multicast
relevant changes,listento the state of all other ganglia nodes andanswerall requests for an XML description of the
cluster state. Multicast networking allows a single gmond to simultaneously send information to all remote gmonds.

4

Ganglia Cluster Toolkit

Gmond as a Good Listener

By default, gmond has two threads which listen to the multicast channel and write the data to a fast, in-memory hash
table. All metric data for each cluster node is processed and saved. You might think this would require large amounts
of memory but a gmond can maintain the in-memory data in just 16+ 136*n_nodes +364*n_metrics bytes. For
example, if you have a massive1024node cluster and you are monitoring25 metricson each machine then gmond
will only use16 + 136*1024 + 364*25 = 148380 bytes or just 144 kilobytes of memory! The hash table is
also completely multi-threaded with read/write locks implemented by POSIX thread mutexes and condition variables
for each individual host in the cluster. That means that multiple threads can simultaneously read and write to the hash
without interfering with each other. Very scalable. I know of a few 500+ node clusters running ganglia.

Gmond as a Polite Conversationalist

Each gmond transmits in two different ways: multicasting host state in external data representation (XDR) orsending
XML over a TCP connection.

Gmond only sends updates of the metrics that it is monitoring for two reasons: a change in the value of the metric
exceeds the value threshold or when gmond hasn’t multicast the metric longer than the time threshold. The value
threshold ensures that gmond only multicast when it really needs to. In short, why should it talk if it has nothing new
to say? Of course things are always changing and so the time threshold ensures that small changes haven’t built into
large changes to slowly we don’t notice. The time threshold also acts as a heartbeat measure. If a node doesn’t
multicast in more than the heartbeat interval then the other nodes are alerted that it is likely down. These thresholds
also dramatically reduces chatter on the multicast channel. For example, the number of CPUs on a host is only sent
once an hour since it is a constant whereas 1-minute load could be sent every minute depending on the change in
value.

2.2.1.1.2. Gmond Loves to Meet New Gmonds and Never Leaves a Fallen Comrad

Since all nodes in your cluster are storing your cluster state, it is important that all nodes have the same cluster
image. The gmond self-organizes and knows how to make sure that all gmonds are on the same page.

Gmond Loves to Meet New Gmonds

Anytime that gmond gets a multicast packet from a new host, it expires it’s time threshold of all its metrics. This
means that all its data will get sent to the remote gmond even if it wasn’t previously scheduled to be sent. For
example, the number of CPUs is only multicast once an hour. If one gmond did not expire its time threshold then the
remote gmond wouldn’t know the number of CPUs on that machine for up to an hour.

Gmond Never Leaves a Fallen Comrad

Gmond is also good at handling failures. It’s inevitable that nodes in your cluster will go down occasionally and
(heaven-forbit!) gmond may even fail. Recovering gracefully from those temporary failures is important. If a gmond
hasn’t heard from a remote comrad during the heartbeat interval and then suddenly starts hearing from that remote

5

Ganglia Cluster Toolkit

gmond again, it will expire the time threshold on all its metrics as if to say to it’s fallen comrad, "Welcome back.
Here is all I know about myself".

Gmond is Self-Aware

Each gmond processes its own multicast data locally via loopback. That means that it saves in-memory the very data
that it’s sending to remote gmonds.

2.2.1.1.3. Gmond Doesn’t Talk with Strangers

When asked, gmond will write out the complete cluster state in XML including a DTD. However, gmond will only
share that data with hosts in its in-memory cluster hash OR a host specified with the trusted_host commandline
option at gmond startup. The trusted_host option is a very powerful tool. Say you have two clusters: Cluster A is in
California and Cluster B is in Nevada. Setting up multicast enabled routes between your two clusters would likely be
a nightmare. However, using the trusted_host option only requires unicast routes between the two clusters. On
Cluster A you would start a gmond with

gmond --trusted_host xxx.xxx.xxx.xxx

and fill in the x’s with the IP address of a remote machine on Cluster B. On Cluster B vice versa, start gmond with the
trusted_host set to a machine on Cluster A. Consider it a handshake between strangers to build a trust relationship.

If you want to see just how easy it is to getXML description of your cluster, run

telnet localhost 8649

from machine running gmond. You can also run

telnet remote.cluster.nodename 8649

to get aremote XML image(assumingit trusts you!). Also, to help you remember the port number, 8649 is
U*N*I*X on a phone keypad.

2.2.1.1.4. Gmond Will Listen to What Gmetric Has to Say Too

You can send custom metrics on the ganglia multicast channel as well. Gmond monitors 24 metrics right out of the
box (as of this writing): Number of CPU, CPU Speed, % CPU User, System, Nice Idle, and Absolute Idle,
1,5,15-Minute Load Averages, Total, Free, Shared, Buffered, and Cached Memory, Total and Free Swap Space, Total
and Running Processes, OS Name and Release, Hardware Type, and Boottime and System Time. Gmond doesn’t
assume that these are the only only metrics that you want to monitor. To expand the list of metrics you are
monitoring, usethe gmetric tool.

6

Ganglia Cluster Toolkit

2.2.1.2. A Graphical Explanation of Gmond

The grey box represents the Ganglia Monitoring Daemon (gmond) with all its components inside: themetric
scheduler thread, multicast listening threads, fast in-memory hashand theXML output threads.

Themetric scheduler threadchecks the state of the host that gmond is running on and multicasts any relavent
changes. Gmond decides what is relavent by usingvalue and time thresholds. The metric scheduler remembers what
value it last multicast and when it multicast it. If the difference between the last multicast value and the new value is
greater than the value threshold, then the metric scheduler will multicast the value. Also, if the time elapsed since the
metric value has been multicast is greater than the time threshold it will be sent regardless of its value. Thevalue and
time thresholdsare metric-specific and set based on the metric characteristics.

Themulticast listening threadslisten on the ganglia multicast channel for incoming messages including messages
from itself (via loopback). All data is stored in thefast in-memory hash. This hash holds the data for all hosts sending

7

Ganglia Cluster Toolkit

data on the cluster multicast channel via gmond or gmetric.

TheXML output threadsare responsible for processing incoming connection requests. The XML output threads will
only allow hosts in the gmond in-memory hash OR hosts explicitly listed on the gmond commandline to connect. A
host connecting to gmond will receive a complete XML description of the state of all hosts multicasting on its local
multicast channel. You use telnet if you want to see this description...

telnet localhost 8649

8649 (U*N*I*X on a phone keypad)is the default port for the XML threads to listen on but it can be changed at
compile or run time.

8

Ganglia Cluster Toolkit

2.2.1.3. Building a Cluster of Clusters Using Trust Relationships

The vision of the Millennium Project (http://www.millennium.berkeley.edu/) at UC Berkeley
(http://www.cs.berkeley.edu/) was to build a campus-wide"cluster of clusters":smaller clusters in Civil Engineering,
Mathematics, Geology and Geophysics, The Berkeley Multimedia Research Center and over 20 other groupslinked

9

Ganglia Cluster Toolkit

togetherto a large central cluster in the Computer Science building. This distributed model can also be calledGrid
Computing.

Gangliaeasily allows distributed resources to be linked together usingtrust relationshipsbetween clusters of
computers. The diagram above should be referenced as an example of how to buildtrust between computing
resources.

2.2.1.3.1. Trust Relationships Can Be One-Way or Two-Way

Trust relationships are a simple way to connect clusters together in useful ways.

2.2.1.3.1.1. Two-Way Trust Relationships

CLUSTER 1andCLUSTER 2in the diagram above are linked together in atwo-way trust relationship. All machines
on cluster 1 and cluster 2 have theGanglia Monitoring Daemon (gmond)running on them connected to the local
multicast channel. This multicast connection allows the nodes in each cluster to update their peers with information
about their health, configuration and state. In their default configurations gmonds will only exchange data with other
gmonds on their local multicast channel. Thetrusted_hostparameter allows gmonds to build trust relationships with
hosts outside of the local multicast channel.

To build the two-way trust relationship, the administrator of CLUSTER 1 started thegmondprocess on 1.1.1.1 with
the following command line

gmond --trusted_host 2.2.2.2

The administrator of CLUSTER 2 started thegmondprocess on 2.2.2.2 with the command line

gmond --trusted_host 1.1.1.1

Now gangliaprograms and libraries on 2.2.2.2 (Cluster 2) can pull the XML description of Cluster 1 by connecting
to the ip address 1.1.1.1andCluster 1 can pull the XML description from Cluster 2 as well.

2.2.1.3.1.2. One-Way Trust Relationships

In the example diagram above, the administrator of Cluster 1 has also made a node on Cluster 3 atrusted host. The
administrator of Cluster 3 has not opened his cluster to Cluster 1. While Cluster 3 applications can pull the XML
description of Cluster 1 state, Cluster 1 is not allowed to pull any data from Cluster 3. This is aone-way trust
relationship.

10

Ganglia Cluster Toolkit

2.2.1.3.2. Trust is Not Additive

It is important to note that just becauseCluster 1has a trust relationship with bothCluster 2andCluster 3. This does
not mean thatCluster 2andCluster 3have any trust relationship between them. Cluster administrators must
explicitly state a trust relationship with a remote cluster before that relationship is realized.

2.2.1.3.3. Only Unicast Routes Between Clusters is Required

While gangliahinges the power of multicast locally for a cluster, all data exchanged between clusters is a unicast
TCP XML stream. No special configuration is required of the routers between two clusters.

2.2.1.3.4. Trust Relationship Do Not Allow Others to Exec Jobs on your Cluster

The ganglia execution environment is completely separate from the ganglia monitoring core. TheGanglia
Monitoring Daemon (gmond)is only responsible for real-timemonitoringof clusters. The security model for
executing jobs will require a completely different set prerequisites (cluster key exchanges, user-authentication, etc).

3. Installing the Ganglia Components

3.1. Ganglia Execution Environment Installation
The ganglia execution environment is comprised of two separate software components:AUTHDandGEXEC. I
recommend that youlearn more about the execution componentsbefore you begin the installation.

Note: GEXEC relies on AUTHD so AUTHD must be installed on any machine you want to run GEXEC.

Note: The ganglia execution components have only been tested on Linux and are very likely not work on any
other OS at this time. We may port it to other OSes when we have a chance but it’s not a priority at this time

To simplify the directions, I’m going to use syntax that assumes you have SSH installed. If you don’t have SSH
installed just interpretssh <hostname>to mean "run a command on <hostname>" andscp <hostname>to mean
"copy a file to <hostname>"

11

Ganglia Cluster Toolkit

3.1.1. Installing the authd component

1. Create your cluster-wide RSA public/private key pairs using OpenSSL (http://www.openssl.org/).

prompt# openssl genrsa -out auth_priv.pem
prompt# chmod 600 auth_priv.pem
prompt# openssl rsa -in auth_priv.pem -pubout -out auth_pub.pem

The fileauth_priv.pemis yourprivatecluster key and the fileauth_pub.pemis yourpubliccluster key. These
files will be created in the directory that you run the openssl commands in.

2. Install yourpubliccluster key on any node which will bereceivingGEXEC execution requests (most likely
every node in your cluster). For example...

prompt# scp auth_pub.pem bar1:/etc/auth_pub.pem
prompt# scp auth_pub.pem bar2:/etc/auth_pub.pem
prompt# scp auth_pub.pem bar3:/etc/auth_pub.pem

3. Install yourprivatecluster key on any node which willlaunchGEXEC requests. This will likely be your
frontendnode(s). If you want tolaunchGEXEC from your nodes they will need your private cluster key as well
as the public cluster key. For example, if you are going to spawn GEXEC jobs from bar1 and bar2 then...

prompt# scp auth_priv.pem bar1:/etc/auth_priv.pem
prompt# scp auth_priv.pem bar2:/etc/auth_priv.pem

Warning
If someone has access to your private cluster key, they will be able to run on any machine in your
cluster with the corresponding public key installed. They will also be able to masquerade as any
user on the system as well. Double and triple-check that your private key(s) is set mode 0600 and
owned by root. If ever you think your cluster private key is compromised redo steps 1-3 above.

4. You need to install authd on every node you want to run GEXEC on. If your cluster nodes have access to the
public internet, you only need to run...

prompt# ssh bar1 rpm -Uvh http://prdownloads.sourceforge.net/ganglia/authd-0.2.0-1.i386.rpm
prompt# ssh bar2 rpm -Uvh http://prdownloads.sourceforge.net/ganglia/authd-0.2.0-1.i386.rpm
prompt# ssh bar3 rpm -Uvh http://prdownloads.sourceforge.net/ganglia/authd-0.2.0-1.i386.rpm
...

... on every node in your cluster. Otherwise, you can just download the latest authd RPM
(http://prdownloads.sourceforge.net/ganglia/authd-0.2.0-1.i386.rpm) and install it on all your nodes.

12

Ganglia Cluster Toolkit

Note: If you are going to compile Authd from source, you will to download and install the libe library available
from the front page of the ganglia web site (http://ganglia.sourceforge.net/)

Here are the files that will be installed from the authd RPM

prompt# rpm -ql authd-0.2.0-1
/etc/init.d/authd
/usr/include/auth.h
/usr/lib/libauth.a
/usr/sbin/authd

3.1.2. Installing the Ganglia Execution (GEXEC) component

Note: If you are going to compile Gexec from source, make sure to add the --enable-ganglia flag to the configure
script. This ensures that the execution environment connects to the monitoring core instead of working as a
stand-alone component. Compiling with the --enable-ganglia flag requires that libganglia be installed on the
compile machine. You can download libganglia from http://ganglia.sourceforge.net
(http://ganglia.sourceforge.net/).

prompt# ./configure --enable-ganglia
loading cache ./config.cache
checking for a BSD compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking whether make sets ${MAKE}... yes
checking for working aclocal... found
checking for working autoconf... found
checking for working automake... found
checking for working autoheader... found
checking for working makeinfo... found
checking for gcc... gcc
checking whether the C compiler (gcc) works... yes
checking whether the C compiler (gcc) is a cross-compiler... no
checking whether we are using GNU C... yes
checking whether gcc accepts -g... yes
checking for a BSD compatible install... /usr/bin/install -c
checking for ranlib... ranlib
checking for gawk... gawk
checking whether ln -s works... yes
Use of Ganglia for node selection enabled
...

13

Ganglia Cluster Toolkit

Note: Authd must be installed on every node you install GEXEC on.

If your cluster nodes have access to the public Internet, run the following on each node in your cluster...

prompt# ssh bar1 rpm -Uvh http://prdownloads.sourceforge.net/ganglia/gexec-0.3.3-1.i386.rpm
prompt# ssh bar2 rpm -Uvh http://prdownloads.sourceforge.net/ganglia/gexec-0.3.3-1.i386.rpm
prompt# ssh bar3 rpm -Uvh http://prdownloads.sourceforge.net/ganglia/gexec-0.3.3-1.i386.rpm
...

If your cluster nodes are on a private network, you will need to download the latest RPM for gexec
(http://prdownloads.sourceforge.net/ganglia/gexec-0.3.3-1.i386.rpm) and install it on each node.

Here are the files that will be installed from the GEXEC RPM. As you can see from the gexec file placed in the
/etc/xinetd.d/ directory, gexecd is an (x)inetd daemon which by default listens on port 2875/tcp

prompt# rpm -ql gexec-0.3.3-1
/etc/xinetd.d/gexec
/usr/bin/gexec
/usr/include/gexec_lib.h
/usr/lib/libgexec.a
/usr/sbin/gexecd

3.2. Ganglia Monitoring Core Installation
If you don’t understand how each component of the Monitoring Core work together, then I recommend thatyou read
the documentation of the components

3.2.1. Installation from Source

1. Your machine and network must be multicast-enabled to run ganglia. All Linux distributions that I know of keep
multicast in the default kernel configuration. Multicast takes up very little space in the kernel. To see if you
machine is multicast-enabled...

prompt> cat /proc/net/igmp
Idx Device : Count Querier Group Users Timer Reporter
1 lo : 0 V2

010000E0 1 0:F1BFBABB 0
2 eth0 : 1 V2

010000E0 1 0:F1BFBABC 0

14

Ganglia Cluster Toolkit

If you don’t see any output, then your kernel is likely not multicast-enabled. By the way, IGMP stands for
Internet Group Management Protocol

If your machines are all on the same switch then you are in luck: gmond is ready for use without any
commandline tweaks. However, if the machines in your cluster are seperated by a router, then you will need to
set the--mcast_ttlparameter of gmond to be higher than the default of 1. Set the multi-cast Time-To-Live (TTL)
to be one greater than the number of hops (routers) between the hosts. Also, you will also have to make sure that
the routers are configured to pass along the multicast traffic.

Note: Some users have reported problems on machines with no "default" route. Gmond reports the error
mcast_join() setsockopt() error: No such device and then exits at startup. The workaround is to create a
static route for the ganglia multicast channel.

prompt> route add -host 239.2.11.71 dev eth0

Replace eth0 above with the name of the network interface you want to send ganglia multicast traffic on

2. Download the source tarball from http://ganglia.sourceforge.net/

3. Unzip the distribution

prompt> gunzip < ganglia-monitor-core-2.3.1b4.tar.gz | tar -xvf -
ganglia-monitor-core-2.3.1b4/
ganglia-monitor-core-2.3.1b4/Makefile.in
ganglia-monitor-core-2.3.1b4/README
ganglia-monitor-core-2.3.1b4/stamp-h.in
ganglia-monitor-core-2.3.1b4/AUTHORS
ganglia-monitor-core-2.3.1b4/COPYING
ganglia-monitor-core-2.3.1b4/ChangeLog
ganglia-monitor-core-2.3.1b4/INSTALL
ganglia-monitor-core-2.3.1b4/Makefile.am
ganglia-monitor-core-2.3.1b4/NEWS
ganglia-monitor-core-2.3.1b4/acconfig.h
ganglia-monitor-core-2.3.1b4/acinclude.m4
ganglia-monitor-core-2.3.1b4/aclocal.m4
ganglia-monitor-core-2.3.1b4/config.h.in
...

4. Jump into the distribution directory

prompt> cd ganglia-monitor-core-2.3.1b4

15

Ganglia Cluster Toolkit

5. Run the configuration script

Note: You must add the --disable-shared and --enable-static configure flags if you running on AIX

prompt> ./configure
creating cache ./config.cache
checking for a BSD compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking whether make sets ${MAKE}... yes
checking for working aclocal... found
checking for working autoconf... found
checking for working automake... found
checking for working autoheader... found
checking for working makeinfo... found
checking host system type... i686-pc-linux-gnu
checking for gcc... gcc
...
creating ./config.status
creating Makefile
creating lib/Makefile
creating gmond/Makefile
creating gmetric/Makefile
creating ganglia.spec
creating config.h
linking ./gmond/machines/linux.c to gmond/machine.c

6. Run make

prompt> make
make all-recursive
make[1]: Entering directory ‘/tmp/mas/ganglia-monitor-core-2.3.1b4’
Making all in lib
make[2]: Entering directory ‘/tmp/mas/ganglia-monitor-core-2.3.1b4/lib’
/bin/sh ../libtool --mode=compile gcc -DHAVE_CONFIG_H -I. -I. -I.. -I. -O2 -D_REENTRANT -

Wall -Wshadow -Wpointer-arith -Wcast-align -Wstrict-prototypes -D_GNU_SOURCE -c daemon_inetd.
c
mkdir .libs
gcc -DHAVE_CONFIG_H -I. -I. -I.. -I. -O2 -D_REENTRANT -Wall -Wshadow -Wpointer-arith -
Wcast-a
lign -Wstrict-prototypes -D_GNU_SOURCE -c daemon_inetd.c -fPIC -DPIC -o .libs/daemon_inetd.l
o

16

Ganglia Cluster Toolkit

gcc -DHAVE_CONFIG_H -I. -I. -I.. -I. -O2 -D_REENTRANT -Wall -Wshadow -Wpointer-arith -
Wcast-a
lign -Wstrict-prototypes -D_GNU_SOURCE -c daemon_inetd.c -o daemon_inetd.o >/dev/null 2>&1
mv -f .libs/daemon_inetd.lo daemon_inetd.lo
...

7. Once everything is built, install it

prompt> make install
Making install in lib
make[1]: Entering directory ‘/tmp/mas/ganglia-monitor-core-2.3.1b4/lib’
make[2]: Entering directory ‘/tmp/mas/ganglia-monitor-core-2.3.1b4/lib’
/bin/sh ../config/mkinstalldirs /usr/lib
/bin/sh ../libtool --mode=install /usr/bin/install -c libganglia.la /usr/lib/libganglia.la
...

8. Start upgmondand make sure it is started at reboot

prompt> cp ./gmond.init /etc/rc.d/init.d/gmond
prompt> chkconfig --add gmond
prompt> chkconfig --list gmond
gmond 0:off 1:off 2:on 3:on 4:on 5:on 6:off
prompt> /etc/rc.d/init.d/gmond start
Starting GANGLIA gmond: [OK]

9. Test your installation

prompt> telnet localhost 8649

You should seeXML that conforms to the ganglia XML spec

3.2.2. Installation Using RPM

1. Your machine and network must be multicast-enabled to run ganglia. All Linux distributions that I know of keep
multicast in the default kernel configuration. Multicast takes up very little space in the kernel. To see if you
machine is multicast-enabled...

prompt> cat /proc/net/igmp
Idx Device : Count Querier Group Users Timer Reporter
1 lo : 0 V2

17

Ganglia Cluster Toolkit

010000E0 1 0:F1BFBABB 0
2 eth0 : 1 V2

010000E0 1 0:F1BFBABC 0

If you don’t see any output, then your kernel is likely not multicast-enabled. By the way, IGMP stands for
Internet Group Management Protocol

If your machines are all on the same switch then you are in luck: gmond is ready for use without any
commandline tweaks. However, if the machines in your cluster are seperated by a router, then you will need to
set the--mcast_ttlparameter of gmond to be higher than the default of 1. Set the multi-cast Time-To-Live (TTL)
to be one greater than the number of hops (routers) between the hosts. Also, you will also have to make sure that
the routers are configured to pass along the multicast traffic.

Note: Some users have reported problems on machines with no "default" route. Gmond reports the error
mcast_join() setsockopt() error: No such device and then exits at startup. The workaround is to create a
static route for the ganglia multicast channel.

prompt> route add -host 239.2.11.71 dev eth0

Replace eth0 above with the name of the network interface you want to send ganglia multicast traffic on

2. Would you believe me if I told you it’s a simple as installing an RPM on each node in your cluster? Just run this
command on each node of your cluster to install the monitoring core. If your cluster nodes have access to the
public Internet, just run the following on each node...

prompt> rpm -Uvh http://prdownloads.sourceforge.net/ganglia/ganglia-monitor-core-2.3.1b4-
1.i386.rpm
Retrieving http://prdownloads.sourceforge.net/ganglia/ganglia-monitor-core-2.3.1b4-1.i386.rpm
Preparing... ### [100%]

1:ganglia-monitor-core ### [100%]
Starting GANGLIA gmond: [OK]

Otherwise you can just download the latest monitoring core RPM
(http://prdownloads.sourceforge.net/ganglia/ganglia-monitor-core-2.3.1b4-1.i386.rpm) and install it on each
node in your cluster.

3.2.3. Creating a gmond configuration file

While the default options for gmond will work for most clusters, gmond is very flexible and can be customize with
the configuration file: /etc/gmond.conf.

18

Ganglia Cluster Toolkit

/etc/gmond.conf is not required as its absence will only cause gmond to start in a default configuration. Here is a
sample of a gmond.conf configuration file...

This is the configuration file for the Ganglia Monitor Daemon (gmond)
Documentation can be found at http://ganglia.sourceforge.net/docs/
#
To change a value from it’s default simply uncomment the line
and alter the value
#####################
#
The name of the cluster this node is a part of
default: "unspecified"
name "My Cluster"
#
The multicast channel for gmond to send/receive data on
default: 239.2.11.71
mcast_channel 239.2.11.71
#
The multicast port for gmond to send/receive data on
default: 8649
mcast_port 8649
#
The multicast interface for gmond to send/receive data on
default: the kernel decides based on routing configuration
mcast_if eth1
#
The multicast Time-To-Live (TTL) for outgoing messages
default: 1
mcast_ttl 1
#
The number of threads listening to multicast traffic
default: 2
mcast_threads 2
#
Which port should gmond listen for XML requests on
default: 8649
xml_port 8649
#
The number of threads answering XML requests
default: 2
xml_threads 2
#
Hosts ASIDE from "127.0.0.1"/localhost and those multicasting
on the same multicast channel which you will share your XML
data with. Multiple hosts are allowed on multiple lines.

19

Ganglia Cluster Toolkit

default: none
trusted_hosts 1.1.1.1 1.1.1.2 1.1.1.3 \
2.3.2.3 3.4.3.4 5.6.5.6
#
The number of nodes in your cluster. This value is used in the
creation of the cluster hash.
default: 1024
num_nodes 1024
#
The number of custom metrics this gmond will be storing. This
value is used in the creation of the host custom_metrics hash.
default: 16
num_custom_metrics 16
#
Run gmond in "mute" mode. Gmond will only listen to the multicast
channel but will not send any data on the channel.
default: off
mute on
#
Run gmond in "deaf" mode. Gmond will only send data on the multicast
channel but will not listen/store any data from the channel.
default: off
deaf on
#
Run gmond in "debug" mode. Gmond will not background. Debug messages
are sent to stdout. Value from 0-100. The higher the number the more
detailed debugging information will be sent.
default: 0
debug_level 10
#
If you don’t want gmond to setuid, set this to "on"
default: off
no_setuid on
#
Which user should gmond run as?
default: nobody
setuid nobody
#
If you do not want this host to appear in the gexec host list, set
this value to "on"
default: off
no_gexec on
#
If you want any host which connects to the gmond XML to receive
data, then set this value to "on"

20

Ganglia Cluster Toolkit

default: off
all_trusted on

If you want to customize the operation of gmond, simply edit this file and save it to /etc/gmond.conf. You can create
multiple gmond configurations by writing the configuration file to a different file, say /etc/gmond_test.conf, and the
using the --config option of gmond to specify which configuration file to use.

gmond --config /etc/gmond_test.conf

would start gmond with the settings in /etc/gmond_test.conf

3.3. Installation of the Ganglia PHP/RRD Web Client
To see a live demo of the Ganglia Client tune your web browser to http://ganglia.mrcluster.org/

3.3.1. Installing prerequisite software

1. You must have a web server installed which correctly parses PHP files. For more information see
http://www.php.net (http://www.php.net/)

2. You need to install a ganglia monitoring daemon (gmond) on your web server so that it can listen to the ganglia
cluster multicast channel. Visit http://ganglia.sourceforge.net/ if you don’t have the ganglia monitoring core
tarball or RPM

3. Install rrdtool (http://www.rrdtool.com/download.html). Download the latest "Stable Release". Installation is
simple.

gunzip < rrdtool-1.0.33.tar.gz | tar -xvf -
cd rrdtool-1.0.33
./configure
make
make site-perl-install
make install

(Note: you may need to be root to install rrdtool into your site-perl directory)

4. Install expat (http://expat.sourceforge.net (http://expat.sourceforge.net/)) if you don’t already have it installed.
Newer Linux installations have it installed out-of-box. To check if you have it installed, run the command "rpm
-qa | grep -i expat". If not... Download the latest tarball expat-1.95.2.tar.gz and install.

gunzip < expat-1.95.2.tar.gz | tar -xvf -
cd expat-1.95.2

21

Ganglia Cluster Toolkit

./configure
make
make install

5. Install the perl XML::Parser if you don’t already have it
(http://wwwx.netheaven.com/~coopercc/xmlparser/intro.html). Newer Linux installations have it installed
out-of-box. To check if you have it installed, run the command "rpm -qa | grep -i parser". If not... Downlaad the
latest tarball XML-Parser-2.30.tar.gz and install.

gunzip < XML-Parser-2.30.tar.gz | tar -xvf -
cd XML-Parser-2.30
perl Makefile.PL
make
make install

3.3.2. Configuration

Note: all files that I refer to from here on are relative to the ganglia-php-rrd-client-x.y.z directory.

1. Check the first few lines of the ganglia-rrd.pl file for configuration options. The default will work for almost
everyone. All data is by default written to the /var/log/ganglia directory. If you don’t plan on running the
ganglia-rrd.pl daemon as root.. you may need to change the directory OR create that directory as root and make
it writable by the ganglia-rrd.pl daemon user. Either way.

2. Check the first few line of the ./web/graph.php file for configuration options. Make sure the the $rrd_dir variable
points to the SAME directory as your ganglia-rrd.pl script ("/var/log/ganglia/rrds" by default). Secondly, make
sure that the variable $rrdtool points to your "rrdtool" binary. It installs in (/usr/local/rrdtool-x.y.z/bin/rrdtool) by
default).

3.3.3. Installation

1. Copy the web files to a directory on your web server.

cd ./web
cp * /var/www/html/ganglia

2. Make the directory /var/log/ganglia owner root mode 755

mkdir /var/log/ganglia

22

Ganglia Cluster Toolkit

chown root /var/log/ganglia
chmod 755 /var/log/ganglia

3. Copy the ganglia-rrd.pl daemon to /var/log/ganglia

cd ..
cp ganglia-rrd.pl /var/log/ganglia

Note: You can put the ganglia-rrd.pl daemon anywhere on your machine you like. The rc file in the next step,
Step 4, assumes that it can find it there. If you move the location of ganglia-rrd.pl then make sure you modify the
rc file in the next step.

4. Make sure the ganglia-rrd.pl daemon is started at startup.

cp ganglia-php-rrd /etc/rc.d/init.d
chkconfig --add ganglia-php-rrd

Note: use the file ganglia_rrd for SuSE Linux

5. Fire up the ganglia-rrd.pl daemon

/etc/rc.d/init.d/ganglia-php-rrd start

Note: Having multiple ganglia-rrd.pl daemon running at once will make your rrd data incorrect. Only one
daemon should be running.

6. Point your web browser to the directory you copied the web files to and check that it’s working

3.3.4. Debugging

1. Make sure your web server is up and running. If not, start it and try again. Check your web server logs to see if
there is any helping info there.

2. Make sure the ganglia-rrd.pl daemon is running

ps -auxw | grep ganglia-rrd.pl

If not, then check /var/log/ganglia/ganglia-rrd-errors for clues if any. Also, make sure that the daemon is being
started at startup.

23

Ganglia Cluster Toolkit

3. Check in the directory /var/log/ganglia/rrds to ensure the all the Round-Robin databases are being built
correctly. Make sure the permissions are readable by user "nobody" since most web servers run as that user

4. Double-check that you have the configuration options in graph.php and ganglia-rrd.pl correct.

5. Send an email to ganglia-general@lists.sourceforge.net and ask for some help

I hope that you find this tool helpful for monitoring your cluster. Feel free to email me any questions, comments,
patches, etc.

4. Using the Ganglia Components

4.1. Using GEXEC

4.1.1. The GEXEC Commandline

-h, --help

Gexec will output help

-n, --nprocs

Used to specify the number of cluster nodes to spawn the command on. If you want to run a job on the entire
cluster set n to 0 (zero). This is the only required variable on the commandline

-d, --detached

The gexec client will spawn the remote jobs and then detach. Typically gexec does not exit until all remote
processes have exited. This option is very useful to start processes on remote machines which will not exit (e.g.
daemons).

-p, --prefix-type

Valid arguments are(none|ip|vnn|host) . The default is vnn. This is the string will will be prepended to the
gexec output.None means no data is prepended.ip means the I.P. address of the remote gexec host will be
prepended.vnn (virtual node number) means that the unique numerical host identifier will be prepended.host

will prepend the data with the hostname.

24

Ganglia Cluster Toolkit

-f, --fanout

Gexec uses an n-ary tree for communication with remote processes. The default is a binary tree. This option
allows you to change the way the tree is created. A fanout of 4 would be an 4-ary tree, for example.

For example, to runuptime on ten nodes in your cluster and have the output prefixed with the hostname run...

prompt> gexec -n 10 -p host uptime
mm88.Millennium.Berkeley.EDU 4:40pm up 4:48, 0 users, load average: 1.00, 1.00, 1.11
mm98.Millennium.Berkeley.EDU 4:40pm up 4:47, 0 users, load average: 0.00, 0.00, 0.07
mm67.Millennium.Berkeley.EDU 4:40pm up 4:46, 0 users, load average: 0.00, 0.00, 0.17
mm83.Millennium.Berkeley.EDU 4:40pm up 4:48, 0 users, load average: 1.00, 1.00, 1.12
mm38.Millennium.Berkeley.EDU 4:39pm up 42 days, 5:51, 0 users, load average: 1.00, 1.00, 1.10
mm87.Millennium.Berkeley.EDU 4:40pm up 4:48, 0 users, load average: 0.00, 0.00, 0.08
mm92.Millennium.Berkeley.EDU 4:40pm up 4:47, 0 users, load average: 0.00, 0.00, 0.09
mm86.millennium.Berkeley.EDU 4:40pm up 4:48, 0 users, load average: 1.00, 1.00, 1.08
mm56.Millennium.Berkeley.EDU 4:40pm up 4:48, 3 users, load average: 0.00, 0.00, 0.64
mm42.Millennium.Berkeley.EDU 4:40pm up 4:46, 0 users, load average: 0.00, 0.00, 0.24

4.1.2. Explicitly Setting Nodes

GEXEC can be used interactively using the gexec client or programmatically using the GEXEC library, libgexec.a.
With the client, node selection can be done in one of two ways. It can done by explictly naming a set of nodes using
the GEXEC_SVRS environment variable:

export GEXEC_SVRS="tgl0 tgl1 tgl2 tgl3"
gexec -n 4 hostname

1 tgl1
3 tgl3
0 tgl0
2 tgl2

If you specify less, than the number of GEXEC_SVRS listed then the first n nodes are chosen

export GEXEC_SVRS="tgl0 tgl1 tgl2 tgl3"
gexec -n 2 hostname

0 tgl0
1 tgl1

25

Ganglia Cluster Toolkit

4.1.3. Using a Dynamic Real-Time Node List

Alternatively, node selection can also be done by specifying one or more potential gmond servers to query. The
advantage is using this method is that your host list is load-balanced and only includes hosts that are up and have
gexec installed.

Note: The real-time, load-balancing sort value is the 1 min. Load minus the number of CPUs for the number of
available CPUs. The nodes with the most available CPUs are listed at the top. Also, only nodes which are up will
be listed preventing any gexec jobs being sent to hosts that are down.

The first gmond server that is both up and returns a non-empty set of nodes will be used to provide the list of nodes.
This allows you to list redundant gmond servers in case of network problems or gmond failures.

The syntax for the GEXEC_GMOND_SVRS variable is a space-delimited list of hosts. The host syntax ishost:port.
If a port is not specified, then port 8649 (the default gmond XML port) is assumed. For example...

export GEXEC_GMOND_SVRS="tgl1 tgl3:8500"
gexec -n 0 hostname

1 tgl1
4 tgl4
3 tgl3
0 tgl0
2 tgl2

...would query the gmond on tgl1 port 8649 first. If that gmond failed to return information then tgl3 would be
queried on port 8500

Tip: If you want to monitor a node but do not want it to show up in the list of hosts returned by gmond for gexec
use, simply start gmond on that node with the --no_gexec option.

4.2. Using the Ganglia Monitoring Core

4.2.1. The Ganglia Metric Tool (gmetric)

TheGanglia Metric Tool(gmetric) allows you to easily monitor any arbitrary host metrics that you like expanding on
the core metrics that gmond measures out-of-the-box.

If you want help with the gmetric sytax, simply use the “help” commandline option

26

Ganglia Cluster Toolkit

prompt> gmetric --help
gmetric 2.3.1b4

Purpose:
The Ganglia Metric Client (gmetric) announces a metric
value to all Ganglia Monitoring Daemons (gmonds) that are listening
on the cluster multicast channel.

Usage: gmetric [OPTIONS]...
-h --help Print help and exit
-V --version Print version and exit
-nSTRING --name=STRING Name of the metric
-vSTRING --value=STRING Value of the metric
-tSTRING --type=STRING Either string|int8|uint8|int16|uint16|int32|uint32|float|double
-uSTRING --units=STRING Unit of measure for the value e.g. Kilobytes, Celcius
-cSTRING --mcast_channel=STRING Multicast channel to send/receive on (default=’239.2.11.71’)
-pINT --mcast_port=INT Multicast port to send/receive on (default=8649)
-iSTRING --mcast_if=STRING Network interface to multicast on e.g. ’eth1’ (de-

fault=’kernel decides’)
-lINT --mcast_ttl=INT Multicast Time-To-Live (TTL) (default=1)

The gmetric tool formats a special multicast message and sends it to all gmonds that are listening. Your job is
simpler: tell gmetric what data you want sent.

All metrics in ganglia have aname, value, typeand optionallyunits. For example, say I wanted to measure the
temperature of my CPU (something gmond doesn’t do) then I could multicast this metric withname=“temperature”,
value=“63”, type=“int16” andunits=“Celcius”.

Assume I have a program calledcputemp which outputs in text the temperature of the CPU

prompt> cputemp
63

I could easily send this data to all listening gmonds by running

prompt> gmetric --name temperature --value ‘cputemp‘ --type int16 \
--units Celcius

Check the exit value of gmetric to see if it successfully sent the data: 0 on success and -1 on failure.

To constantly sample thistemperaturemetric, you just need too add this command to your cron table.

27

Ganglia Cluster Toolkit

4.2.2. The Ganglia Cluster Status Tool (gstat)

The Ganglia Cluster Status Tool (gstat) is a commandline utility that allows you to get status report for your cluster.
With time, it will be a more flexible way to query agmondrunning locally or remotely.

Commandline Options

To get the commandline options simply run...

prompt> gstat --help
gstat 2.3.1b4

Purpose:
The Ganglia Status Client (gstat) connects with a
Ganglia Monitoring Daemon (gmond) and output a load-balanced list
of cluster hosts

Usage: gstat [OPTIONS]...
-h --help Print help and exit
-V --version Print version and exit
-a --all List all hosts. Not just hosts running gexec (default=off)
-d --dead Print only the hosts which are dead (default=off)
-m --mpifile Print a load-balanced mpifile (default=off)
-1 --single_line Print host and information all on one line (default=off)
-l --list Print ONLY the host list (default=off)
-iSTRING --gmond_ip=STRING Specify the ip address of the gmond to query (default=’127.0.0.1’)
-pINT --gmond_port=INT Specify the gmond port to query (default=8649)

Running gstat without any parameters will cause it print a load-balanced (least-loaded host first) list of all the hosts
running gmond along with the process, load, and CPU information. If you want to see which hosts are down in your
cluster, use the--dead gstat option. You can also have gstat produce a dynamic load-balanced mpimachine file with
the--mpifile option.

Gstat Examples

Get a load-balanced list of hosts that are up...

prompt> gstat
CLUSTER INFORMATION

Name: unspecified
Hosts: 97

Gexec Hosts: 73
Dead Hosts: 0

Localtime: Mon Apr 22 16:58:43 2002

CLUSTER HOSTS

28

Ganglia Cluster Toolkit

Hostname LOAD CPU Gexec
CPUs (Procs/Total) [1, 5, 15min] [User, Nice, System, Idle]

mm92.millennium.berkeley.edu
4 (1/ 97) [1.10, 1.19, 0.99] [5.9, 0.0, 0.5, 100.0] ON

mm98.Millennium.Berkeley.EDU
4 (0/ 80) [1.16, 1.67, 1.25] [4.1, 0.0, 0.2, 98.5] ON

mm91.Millennium.Berkeley.EDU
4 (1/ 87) [1.67, 1.78, 1.69] [25.0, 0.0, 0.7, 74.9] ON

mm75.millennium.berkeley.edu
4 (3/ 103) [1.85, 2.54, 1.83] [72.6, 0.0, 0.2, 50.3] ON

mm67.millennium.Berkeley.EDU
4 (4/ 112) [1.89, 2.08, 1.38] [81.4, 0.0, 0.1, 38.5] ON

mm87.millennium.berkeley.edu
4 (4/ 112) [1.95, 1.67, 1.27] [3.2, 0.0, 0.4, 96.4] ON

mm83.millennium.Berkeley.EDU
4 (1/ 120) [2.00, 2.59, 2.24] [25.0, 0.0, 0.0, 75.0] ON

mm10.millennium.Berkeley.EDU
2 (0/ 77) [0.00, 0.06, 0.07] [0.2, 0.0, 0.0, 99.9] ON

...

To get create a dynamic load-balanced mpifile list

prompt> gstat --mpifile
mm56.Millennium.Berkeley.EDU:4
mm44.Millennium.Berkeley.EDU:4
mm31.Millennium.Berkeley.EDU:2
mm43.Millennium.Berkeley.EDU:4
mm15.Millennium.Berkeley.EDU:2
...

4.2.3. The Ganglia Monitoring C Library (libganglia)

The ganglia library is in it’s early stages right now and not ready for production. I’m commenting the code using
Doxygen (http://www.doxygen.org/) so you can take a peak at the latest LibGanglia documentation
(http://ganglia.sourceforge.net/docs/libganglia/html/)

29

Ganglia Cluster Toolkit

5. Frequently Asked Questions

5.1. Execution Environment FAQ
None at this time.

5.2. Monitoring Core FAQ

Q: Can I specify more than one trusted_host on the gmond commandline?

A: Yes.

prompt# gmond --trusted_host 1.1.1.1 --trusted_host 1.1.1.2 --trusted_host 1.1.1.3

Q: Gmond does not start and I get the error "mcast_join() setsockopt() error: No such device". What does that mean?

A: It means there is no route the kernel could find to the ganglia multicast channel. The fix the problem simply run
the following before you start gmond

prompt# route add -host 239.2.11.71 dev eth0

This example assumes you want the multicast data to be sent via eth0.

Q: I’m running gmond onx operating system and some metrics are not being reported

A: All metrics are reported on Linux and FreeBSD. AIX, IRIX, and Solaris support is limited and does not include
every metric. You can use the gmetric tool to work around this problem for now but in the future hope to add full
support for other operating systems.

6. Ganglia Applications
Since gmond exchangeswell-defined XML, it is easy to build applications that plug into the monitoring core. Here
are some applications that have been built with ganglia.

30

Ganglia Cluster Toolkit

6.1. The Ganglia PHP/RRD Web Client
You might want to see the Ganglia PHP/RRD Web Client in action live (http://ganglia.mrcluster.org/) before you
install this plugin. It’s a good example of what you can do with the data ganglia collects.

6.2. Greg Bruno’s Ganglia Python Class and Client
Greg Bruno at NPACI Rocks (http://rocks.npaci.edu/) has created a Python class and ganglia client.

7. Getting Help
If you need help, a good starting point is the latest ganglia documentation (http://ganglia.sourceforge.net/docs/). If
the manual doesn’t answer your question, then the next place to look is browse the ganglia forums
(https://sourceforge.net/forum/?group_id=43021) and mailing list archives
(https://sourceforge.net/mail/?group_id=43021). It is very possible that another ganglia user has had the same
problem as you. If you still haven’t found an answer, then send mail to the ganglia-general@lists.sourceforge.net or
to me, the author, directly at massie@cs.berkeley.edu.

If you may have found a bug then browse the bug list
(https://sourceforge.net/tracker/?atid=434892&group_id=43021&func=browse) to see if the problem is already
being worked on. If there are no similar bugs reported, then please submit a report of the bug
(https://sourceforge.net/tracker/?atid=434892&group_id=43021&func=browse) or even better submit a patch for the
problem (https://sourceforge.net/tracker/?atid=434894&group_id=43021&func=browse):)

8. Ganglia Monitor Core XML Specification
All communication between gmond and any ganglia client is done in extensible markup language (XML) which is
prefixed with a document type definition (DTD). the DTD gives the client an immediate description of exactly what
structure the XML data will have.

Getting the cluster XML description from a node is very simple. You could even use telnet as a ganglia client. for
example...

telnet localhost 8649

on a host running gmond would report the following...

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

31

Ganglia Cluster Toolkit

<!DOCTYPE GANGLIA_XML [
<!ELEMENT GANGLIA_XML (CLUSTER)+>
<!ATTLIST GANGLIA_XML VERSION CDATA #REQUIRED

SOURCE CDATA #REQUIRED>
<!ELEMENT CLUSTER (HOST)+>
<!ATTLIST CLUSTER NAME CDATA #REQUIRED

LOCALTIME CDATA #REQUIRED>
<!ELEMENT HOST (METRIC)+>
<!ATTLIST HOST NAME CDATA #REQUIRED

IP CDATA #REQUIRED
REPORTED CDATA #REQUIRED>

<!ELEMENT METRIC EMPTY>
<!ATTLIST METRIC NAME CDATA #REQUIRED

VAL CDATA #REQUIRED
TYPE (string|int8|uint8|int16|uint16|

int32|uint32|float|double) #REQUIRED
UNITS CDATA #IMPLIED
SOURCE (gmond|gmetric) #REQUIRED>

]>
<GANGLIA_XML VERSION="2.1.2" SOURCE="gmond">
<CLUSTER NAME="unspecified" LOCALTIME="1014959606">
<HOST NAME="dhcp-50-165.Millennium.Berkeley.EDU" IP="169.229.50.165" REPORTED="1014959603">
<METRIC NAME="mem_free" VAL="126532" TYPE="uint32" UNITS="KBs" SOURCE="gmond"/>
<METRIC NAME="mem_cached" VAL="584896" TYPE="uint32" UNITS="KBs" SOURCE="gmond"/>
<METRIC NAME="proc_total" VAL="103" TYPE="uint32" UNITS="procs" SOURCE="gmond"/>
<METRIC NAME="cpu_num" VAL="1" TYPE="uint16" UNITS="CPUs" SOURCE="gmond"/>
<METRIC NAME="swap_total" VAL="530104" TYPE="uint32" UNITS="KBs" SOURCE="gmond"/>
<METRIC NAME="load_fifteen" VAL="0.02" TYPE="float" UNITS="" SOURCE="gmond"/>
...
...

9. ChangeLog

2002-05-01 Matt Massie
* Gmond now has a configuration file for its configuration instead of
passing commandline arguments

2002-04-26 Asaph Zemach
* Completely rewrote ./gmond/machines/linux.c to be much more efficient by
removing the need for 2 threads and pthread mutexes.

32

Ganglia Cluster Toolkit

2002-04-26 Matt Massie
* Modified net.c setsockopt() functions to be more portable

2002-04-19 Matt Massie
* Fixed a bug in the .spec file where upgrades failed if gmond was not up
* Updated autoconf to correctly configure ia64 machines

2002-04-18 Matt Massie
* Enabled setsockopt SO_REUSEADDR for the mcast_join socket in order allow
multiple instances of gmond to listen to the same multicast channel

2002-04-17 Matt Massie
* Added the --list and --single_line option to gstat for output flexibility

2002-04-17 Alan Hagge
* Added preliminary support for IRIX

2002-04-16 Matt Massie
* Add the "gexec" metric in preparation for the release of gexec
* Updated the gexec_cluster() function in libganglia to pull in more data
from the XML and handle unresolved names and names without domains correctly

* Updated gstat to print the updated information from gexec_cluster()
* Added a --no_gexec flag to gmond for hosts that are not part of the
computation cluster (file servers, frontends, etc)

* Added a --all_trusted flag where gmond sees ALL hosts as trusted as
suggested by Martin Knoblauch

* Removed goto statement in pre_process_node() function to avoid rare looping bug
thanks to feedback from Mike Snitzer

2002-04-12 Chris Elmquist
* Updated gmetric.c to check if the name of the metric is empty to prevent
the problem of blank metrics showing up in gmonds

2002-04-08 Matt Massie
* Fixed a bug in the barrier code used in gmond
* Fixed mcast_connect() on non-Linux systems related to the IP_MULTICAST_TTL option
* Added the "--no_setuid" and "--setuid" flags to provide more euid flexibility

2002-04-05 Preston Smith
* Added support for AIX machines

33

Ganglia Cluster Toolkit

2002-04-04 Dave Wallace
* Fixed a bug in gmond which caused big-endian architectures to incorrectly
store multicast data and therefore misreport on the XML port.

* Added a key value check of the XDR multicast data in ./gmond/listen.c

2002-04-04 Matt Massie
* Updated ./lib/gexec_func.c gexec_cluster() function to handle hosts with
no domainname correctly (as pointed out by David Wallace

* Updated the program commandline options to obey the GNU Coding Standard
* Added a --debug_level parameter to gmond to allow debugging the daemon
without recompiling the daemon

* Updated the --trusted_host option to allow multiple instances of the option
* Added a --mcast_ttl gmond option to allow you to modify the
Time-To-Live (TTL) of the outgoing multicast messages

2002-04-02 Neil Spring
* Updated the gmond Makefile to cleanup the machine.c link on "make clean"

2002-04-02 Doc Schneider
* Update the way the number of CPUs are collected in order to workaround a
bug on AMD-based systems.

2002-03-28 Matt Massie
* Change distribution tree to fit the ganglia model. All gmond clients are
in the ./gmond directory and all gregisterd clients in ./gregisterd

2002-03-26 Matt Massie
* Removed the use of streams (via fdopen) on the XML socket and replaced
it with write()s on the socket descriptor to work around Linux bug under
high-stress conditions

2002-03-25 Matt Massie
* Added thread barriers to gmond initialization to ensure listening threads
exist before the threads which multicast are created

2002-03-24 Matt Massie
* Use XML_ParseBuffer() in gexec_cluster() in order to avoid
double copying of buffers (XML input from gmond). Faster.

34

Ganglia Cluster Toolkit

2002-03-22 Matt Massie
* Updated gexec_cluster_free() to ensure no memory leaks even when
cluster.num_nodes and cluster.num_dead_nodes equals zero

* Used setvbuf to ensure the gmond and libganglia are using line buffering

2002-03-21 Matt Massie
* Updated net.h to include netinet/in.h
* Changed sockaddr_in_new function in net.c to plug a potential memory leak
* Added XML_ParserFree() call to gexec_cluster() lib call to plug up
memory leak

* Modified ./gmond/server.c to prevent crashes under heavy stress conditions
* Added fclose() calls to gexec_cluster() to plug a memory leak
* Added gexec_cluster_free() call to gstat for good measure

2002-03-15 Preston Smith
* Patched a wrong sysctl to get free memory for freebsd machines

2002-03-15 Matt Massie
* Added mute and deaf mode for gmond
* Created a new ganglia-monitor-core-lib distribution for the
libganglia library.

* Moved all the documentation to DocBook, added much more information
and updated/removed what was there. Output docs to ./docs directory
of the distribution in both HTML and PDF form. Also installed
Doxygen to document libganglia.

* Add the Ganglia Status Tool (gstat) which allows you to check the status
of your cluster from the commandline. Hosts are sorted with least-loaded
nodes at the top of the list.

2002-03-12 Matt Massie
* Removed the need for the POSIX mutex in pre_process_node() allowing for
faster processing of incoming multicast data

2002-03-11 Matt Massie
* Changed gmond to not count itself as a running process when reporting
the number of running processes.

2002-03-06 Doc Schneider
* Changed the way ganglia builds RPMs to support non-root builds as
suggested by an anonymous SourceForge user

35

Ganglia Cluster Toolkit

2002-02-28 Matt Massie
* Added a new CLUSTER element to the XML with two attributes:
NAME and LOCALTIME. Necessary for monitoring clusters in
many different timezones.

2002-02-27 Matt Massie
* Fixed the getopt_long() call in gmond.c thanks to feedback from
Meik Hellmund. The getopt_long() parameters didn’t match the
switch() statement breaking the "trusted_host" option.

* Fixed a bug in gmond where connections from untrusted hosts caused
segfaults. Error caused by passing datum_free() a NULL pointer in
server_thread() of ./gmond/server.c.

* Changed the way transient nameservice errors are handled by
pre_process_node() in ./gmond/listen.c. Previously, transient errors
were retried but now they are treated as errors (although gmond
will continue trying to resolve the host when it gets a new
multicast packet from it)

* Updated the ganglia.spec file to merge gmond and gmetric into a single
RPM, fixed some small bugs, and updated the RPM information.

* Changed the gmetric options to also support long options and updated
the help output (from -h, --help) to be much more descriptive

2002-02-27 Preston Smith
* Updated the FreeBSD monitoring code to include all metrics
which are monitored under Linux except number of running processes,
absolute cpu idle time, and shared memory. SMP users may find that
freebsd’s cp_time sysctls is not completely accurate under FreeBSD stable
meaning CPU%s might be inaccurate. However, it works under FreeBSD-CURRENT.

2002-02-22 Matt Massie
* Added the getopt source to the ganglia library for system that don’t
have the getopt API available (Solaris, FreeBSD, etc)

2002-02-21 Matt Massie
* Changed the "safe_host" option to "trusted_host" to make it clearer
* Added the "num_nodes" and "num_custom_metrics" commandline options

2002-02-20 Matt Massie
* Completely rewrote the underlying hash library because the original

36

Ganglia Cluster Toolkit

hash functions where over-engineered and had some memory leaks.
New hash functions are superlight and fast. Built test program and
profiled/traced all memory functions using mpatrol. No leaks.

* Updated code to catch when transient nameservice errors occur and retry.
Correctly handle hosts the don’t resolve instead of treating as an error.

* Added a patch submitted by Joshua J England for gmond to correctly report
the number of CPUs and their speed on alpha architectures

* Added a patch submitted by Eirikur Hallgrimsson and written by
Yaroslav Klyukin for gmetric which allows users to chose which network
interface gmetric multicasts metric data

2002-02-12 Matt Massie
* Reduced the number of total threads by one by removing the
for(;;)pause() spin and having the main thread do server work

2002-02-07 Matt Massie
* created the function my_inet_ntop() function in libganglia to deal with
the limitations of inet_ntoa in a multi-threaded environment

* changed the self-organzing behavior of gmond to recognize when a transient
error occured on a remote gmond process

* added verbose error checking of gethostbyaddr() in listen.c

2002-02-04 Matt Massie
* fixed a bug in the cpu_num_func() which reported AMD systems as having
twice as many CPUs as they really did

2002-02-01 Matt Massie

* increased the speed of the host security check for the XML port
* added commandline options for almost all compile-time opts for gmond
* added a --safe_host option to allow a host outside of the multicast
channel to connect

* now gmond strips all quotes (") from gmetric data to keep XML well-formed
* improved the self-organizing behavior of the gmonds

2002-01-18 Matt Massie

* changed the name of the distribution from ganglia to
ganglia-monitor-core to be more descriptive

* modified ./gmond/server.c in order to keep gmond from crashing

37

Ganglia Cluster Toolkit

when a client closes the connection prematurely
* added patch to ./gmond/gmond.c from Neil Spring and Brian Youngstrom to
add command line option and properly setuid to nobody

* added gmond.init.SuSE to the distribution. Contributed by Oliver Mossinger.

10. License
Ganglia is released under the following BSD license.

Copyright (c) 2001 by Matt Massie and The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose, without fee, and without written agreement is
hereby granted, provided that the above copyright notice and the following
two paragraphs appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

11. Special Thanks from Matt
I could never have written ganglia without the input of so many people. I want to make sure that everyone gets credit
for the ideas they’ve shared.

First and foremost,ganglia is a tool I created while working as a staff researcher on the UC Berkeley Millennium
Project (http://www.millennium.berkeley.edu/). The Millennium Project aimed to develop and deploy a campus-wide
cluster of clustersto support advanced applications in scientific computing, simulation and modelling. Millennium
grew out it’s predecessor the NOW Project (http://now.cs.berkeley.edu/). Without the vision of ProfessorDave Culler
(http://www.cs.berkeley.edu/~culler/) the Millennium Project would not have existed. Without the Millennium

38

Ganglia Cluster Toolkit

Project, Ganglia would not have existed. The many faculty, graduate students and staff working on the project were a
source of ideas and feedback for me as ganglia was developing.

Albert Goto, Eric FraserandPeter Sakoskyworked with me as members of the Millennium staff. All four of us share
the same office and on many occasions I’ve bounced ideas off of them and received great feedback.

Brent Chun (http://www.cs.berkeley.edu/~bnc/) and Matt Welsh (http://www.cs.berkeley.edu/~mdw/)were two
graduate students would provided a wealth of good advice about the network programming aspects of ganglia. Brent
Chun opened my eyes to the power of multicast in a cluster environment.

Millennium has also worked closely with the NPACI Rocks (http://rocks.npaci.edu/) group at the San Diego
Supercomputer Center (http://www.sdsc.edu/).Greg Bruno, Mason Katz, and Phil Papadopoulosshowed me how to
bundle of ganglia into an RPM for distribution. Mason Katz also provided some patches and Greg Bruno wrote the
Python class for ganglia.

The Ganglia ChangeLogis littered with names of people who have contributed directly to the development of
ganglia. The constant feedback of ganglia users/developers is very much appreciated! Thanks guys!

Lastly, two books I could not have been without was Richard Stevens’ (http://www.kohala.com/start/) "Unix
Network Programming Network APIs: Sockets and XTI" and Volume 2 "Interprocess Communications". Even
though I’ll never be able to meet him, I admire him for leaving behind so much quality.

12. History of Ganglia Monitoring Core
I came to Berkeley in October of 1999 to work on the Millennium Project in the UCBerkeley CS division
(http://www.millennium.berkeley.edu/). This project aimed to build a campus-wide “cluster of clusters” across 20+
departments and linked to a huge central cluster in the Computer Science department. From the beginning it was
clear that managing computing resources distributed all over campus was going to be a challenge...

My very first naive attempt to monitor the clusters used Perl DBI to write state to a MySQL database. It even had a
strange name,shepherd, because I felt like monitoring hundreds of machines was similar to herding cats. I wasn’t
taking into consideration the lessons learned from the NOW Project (http://now.cs.berkeley.edu/) that building
centralized cluster management tools was not scalable at all. We needed a way to monitor clusters that was as
distributed and easy to manage as possible.

In the Fall of 2000, I wrote a prototype monitoring system in Perl namedgangliabecause I wanted to create a sytem
that would be our cluster’s central nervous system. A daemon called a “dendrite” running on each cluster node
parsed the /proc directory and multicast what it found. Separate daemons (I called “axons”) listened to the multicast
traffic and stored it in an in-memory hash to be queried by a commandline tool. Since multicast data was redundant,
we could install as many “axons” as we liked in case one (or more) crashed. I demo’d the system at SC2000
(http://www.sc2000.org/) by building a web interface which queried an “axon” and then displayed the state of our
cluster at the NPACI (http://www.npaci.edu/) booth.

39

Ganglia Cluster Toolkit

With very little work I moved the Perl prototype to C (I love perl) and version 1 of ganglia was born. Version 1 had
so many shortcomings though. The API for querying the “axons” wasVERYkludgey. Programmers who wanted to
query the axons directly from their programs where frustrated. The data also did not consider endianess so it was not
portable. You could not easily extend the system metrics you were monitoring as everything was hard-coded. The
daemons were not multi-threaded but rather relied too much on poll(). I could go on for days about how bad it was
but I learnedmanyvaluable lessons

With time, we were running both “dendrites” AND “axons” on all machines for total redundancy. In the spring of
2001, I decided to build a single daemon which would replace the two daemons (dendrite & axon) running on all the
machines.Gmondwas born. Ganglia version 2 erased the shortcomings of version 1. It replaced the kludgey API by
exporting all information inan open, well-defined XML format. All data exchanged between gmonds is in XDR to
remove all endianess problems and make the code very portable. A tool calledgmetricwhich allows administrators
to arbitrarily expand (using simple shell scripts) the system metrics they monitored.

40

	Table of Contents
	1. Introduction
	2. Ganglia Components
	2.1. Components of the Ganglia Execution Environment
	2.1.1. The authd system (authentication daemon)
	2.1.2. The Ganglia Execution System (GEXEC)

	2.2. Components of the Ganglia Monitoring Core
	2.2.1. The Ganglia MONitoring Daemon (gmond)
	2.2.1.1. A Simple Introduction to Gmond
	2.2.1.2. A Graphical Explanation of Gmond
	2.2.1.3. Building a Cluster of Clusters Using Trust Relationships

	3. Installing the Ganglia Components
	3.1. Ganglia Execution Environment Installation
	3.1.1. Installing the authd component
	3.1.2. Installing the Ganglia Execution (GEXEC) component

	3.2. Ganglia Monitoring Core Installation
	3.2.1. Installation from Source
	3.2.2. Installation Using RPM
	3.2.3. Creating a gmond configuration file

	3.3. Installation of the Ganglia PHP/RRD Web Client
	3.3.1. Installing prerequisite software
	3.3.2. Configuration
	3.3.3. Installation
	3.3.4. Debugging

	4. Using the Ganglia Components
	4.1. Using GEXEC
	4.1.1. The GEXEC Commandline
	4.1.2. Explicitly Setting Nodes
	4.1.3. Using a Dynamic RealTime Node List

	4.2. Using the Ganglia Monitoring Core
	4.2.1. The Ganglia Metric Tool (gmetric)
	4.2.2. The Ganglia Cluster Status Tool (gstat)
	4.2.3. The Ganglia Monitoring C Library (libganglia)

	5. Frequently Asked Questions
	5.1. Execution Environment FAQ
	5.2. Monitoring Core FAQ

	6. Ganglia Applications
	6.1. The Ganglia PHP/RRD Web Client
	6.2. Greg Bruno's Ganglia Python Class and Client

	7. Getting Help
	8. Ganglia Monitor Core XML Specification
	9. ChangeLog
	10. License
	11. Special Thanks from Matt
	12. History of Ganglia Monitoring Core

