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Abstract 
This investigation is part of the multi core optimization program initiated by HP’s High Performance 
Computing Division. The purpose of this program is to explore ways to best utilize the power of multi 
core processors with HPC applications. 

The two HPC applications, one industrial and one scientific, which were chosen for this investigation, 
have quite different performance characteristics. ESI-Group’s PAM-Crash is known for its moderate 
memory load. It scales well with clock speed and cache size.  The COSMO LM_RAPS weather model 
is more demanding on memory bandwidth but is still sensitive to cache size. 

The goal was to tune both applications to achieve the best possible speedup when migrating from a 
dual core processor platform to a quad core processor with equal clock rates. This is the most 
common challenge today.  

This paper covers PAM-Crash only. The LM_RAPS part is covered by a separate paper [2]. 

Most current and all future multi core processors are sharing caches between multiple cores. Two 
major approaches were tried to exploit this. First, the effect of undersubscription was measured, the 
case where only half of the cores but all of the cache and bus resources are utilized. The second 
approach was to combine DMP and SMP parallelism, called SUD, specifically the case when SMP 
threads are placed on common caches.  

The result is quite positive for both applications. The cumulated performance gain for PAM-Crash is in 
the range of 1.3 to 1.7. The cumulated performance gain for LM_RAPS is around 1.3.  
A number of effects contribute to these performance gains: First, the additional HW resources like the 
doubled number of cores and cache size. Then, application usage is optimized by explicit process 
placement. Finally there is a benefit from SUD parallelism.  

All measurements were conducted on an Intel Xeon based system. They will be repeated on AMD 
based quad core systems whenever they become available.  

Motivation 
Situation in chip manufacturing 

Progress of processor manufacturing has apparently hit physical limits that inhibit further growth of 
clock frequencies. Chipmakers have changed direction accordingly. Instead of clock rate increases 
they now increase the number of processing units on a single chip. These processing units are called 
cores; the chips are called multi core processors.  

This approach sustains the illusion of Moore’s law delivering never-ending growth of compute 
capacity. In the November 2007 Top500 list the positions 3, 4 and 5 are held by clusters based on 
such multi core processors. 

Challenges to software development 

Increases of processor clock rate usually speeds up any HPC application without extra effort. But an 
increased number of cores per chip at the same clock rate does not speed up sequential applications 
at all. Nor does it help applications that have already reached the limits of their parallel efficiency. 
Only those applications that have excellent parallel efficiency can further exploit the power of multi 
core processors. So the challenges to software developers are: 

• To start parallelizing sequential applications.  
This challenge applies mainly to desktop applications where parallelism is not widely used. 

• To work on improving efficiency and scalability of parallel applications. 
Developers have to revisit their approaches to parallelism and pay more attention to the 
remaining sequential portions in the code. This will also require better knowledge of the 
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system architecture. Optimizing for multi core processors is like optimizing for vector 
processors: Only by adjustments in the source code can the full power be exploited.  

Amdahl’s law revisited 

Whenever a parallel program is tested with twice the usual number of processors then some common 
observations are: 

• The sequential portions of the code become more significant. That is particularly true for file 
I/O. 

• The overhead of parallelization increases. This includes all extra tasks like domain 
decomposition, message passing, load balancing, and access of shared resources.  
In many common cases the parallel overhead increases logarithmically with the number of 
processors. 

 
Figure 1. Example for scalability of a 90% efficient parallel application 

 

 

Scope and relevance 

Choice of applications 
PAM-Crash was chosen simply because the author knows it very well and has conditional access to 
the source code and its developers. Even more relevant is that this application is widely used in its 
target market. PAM-Crash is used in the automotive and aircraft industry for impact, crash and 
passenger safety simulation.  
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The world of multi core processors 
Description of Intel based nodes (HP BladeSystem BL460c) 

 
Figure 2. HP BladeSystem BL460c Node with DC Processors 

 

 
 

 
Figure 3. HP BladeSystem BL460c Node with QC Processors 

 

 
Notes on Intel based DC and QC nodes 

• UMA architecture with all memory access going through the chip set. 

• L2 caches are shared between 2 cores. 

• L2 cache size is 2MB per core in both systems. The doubled number of cores also doubles 
the total cache size. 
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• Cumulated bus bandwidth is identical in both systems. This means that QC systems have only 
half the bus bandwidth per core so that performance issues may arise for memory intensive 
applications.   

Description of AMD based nodes (HP BladeSystem BL465c) 

 
Figure 4. HP BladeSystem BL465c Node with DC Processors 

 

 
 

 
Figure 5. HP BladeSystem BL465c Node with QC Processors (future product) 

 

 
Notes on AMD based DC and QC nodes 

• NUMA architecture with physically separated memory pools 

• No cache sharing in DC processors,  
L3 caches are shared between all cores in QC processors. 

• Cumulated cache size is 1MB per core in both systems. The doubled number of cores also 
doubles the total cache size. 

• Cumulated bus bandwidth is identical in both systems. This means that QC systems have only 
half the bus bandwidth per core so that performance issues may arise for memory intensive 
applications.   
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Summarizing the evolution from DC to QC processor generations 

The comparison of previous generation DC processors with the current QC generation can be 
summarized as follows. 

The bad news 
• Clock rates have not increased. 

• Bus bandwidth per core is divided by 2. 

The good news 
• The number of cores per chip and per system has doubled. 

• The cache size per core is equal or has increased. 

• L2 or L3 caches are shared between cores. 

The challenges 
• How to utilize the additional cores? 

• How to work around the bus bandwidth reduction? 

• How to handle shared caches? 

Discussion of some optimization approaches 
Goal definition 

The goal is tuning the two applications to achieve the best possible speedup when migrating from a 
dual core processor platform to a quad core processor with equal clock rates. This is the most 
common challenge today.  

Overlay of computation and file I/O a.k.a. Async I/O 

Having abundant cores allows to even assign “part time” tasks to dedicated cores. The most common 
example is asynchronous file I/O, e.g. output of restart files. These tasks might be idle 95% of their 
time but they can reduce the percentage of sequential execution as referenced by Amdahl’s law. 
 
This can be implemented explicitly within the application or it can be done by the operating system. 
The most common approach in HPC is to implement it in the application as this avoids OS 
dependencies and is likely to be more efficient. 

Overlay of computation and communication 

This idea can be applied to a small set of message passing applications. Assigning dedicated 
resources to propagate messages makes sense whenever immediate synchronization is not required. 
This means that a process has independent work to do while messages are propagated.  

It can be implemented explicitly by using OpenMP or POSIX threads. In that case one or more threads 
would continue to compute while another dedicated thread would do nothing but propagating 
messages. 

Implicit implementation can be realized within the messages passing interface. A great example is the 
capability of HP-MPI, which can assign its activity to a dedicated thread. This behavior can be 
controlled from the environment and requires no source code modifications. Effective implicit overlay 
requires that messages are passed by nonblocking API calls, e.g. by using MPI_Isend and MPI_Irecv 
and by placing the corresponding MPI_Waitall call as late as possible. Unfortunately very few 
applications are written that way so that even implicit overlay requires source modifications before it 
can become efficient. 
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Undersubscription 

Undersubscription means that not all available cores are used. This approach is appropriate when 
bus bandwidth is clearly insufficient to keep all cores busy. The positive effect of undersubscription in 
combination with shared L2 caches is that idle cores yield their share of the L2 cache to the busy 
cores. 
This way it is possible to have a QC system perform significantly better than a DC system by just 
doubling the effective cache size per busy core. It requires that compute processes are placed and 
bound to cores appropriately. 

Elegance is something different. One has to be quite desperate to work this way. Besides the extra 
cache no other components of the processor are utilized. So this is a “better than nothing” type of 
approach. 

Combining distributed and shared memory parallelism 

Almost forgotten: SMP 
Shared Memory Programming (SMP) has gone out of fashion in recent years for a number of reasons. 

1. SMP was often used for quick and dirty parallelization of legacy codes. That approach yields 
only moderate scalability as long as no major effort is spent for true reengineering. 
Consequently SMP got the reputation of being somewhat inefficient. 

2. Some supercomputer architectures are purely DMP capable and unable to run SMP 
applications. 

3. The promise of cheap clusters made of thin industry standard servers has led many 
developers to exclusively go for Distributed Memory Programming (DMP) and abandon the 
initial SMP versions.  

4. The most popular types of cluster nodes used to have no more than 1 or 2 processors so there 
was no point in considering SMP. 

5. All future implementations of major processor types like Intel Xeon, Intel Itanium and AMD 
Opteron will be NUMA architectures. SMP parallelism as done with OpenMP is difficult to 
optimize for memory locality on NUMA systems.  

The downsides of DMP 
DMP yields good scalability for many applications. But there are tradeoffs and costs.  

• Efficient DMP requires complete reengineering of the source code. 

• DMP introduces extra overhead for domain decomposition and message passing. The 
overhead usually grows with the number of domains. 

• The quality of domain decompositions gets worse when the number of domains is increased 
and thus introduces load imbalance. Dynamic load balancing e.g. domain resizing at 
runtime is extremely difficult to implement. In many applications this is not available at all.  

• DMP process data spaces are disjoint. There is no way to utilize shared caches.   

How can SMP underneath DMP help ? 
SMP can be used to parallelize within a node, within a multi core processor, within the scope of a 
shared cache or within the scope of a NUMA node. DMP can be used on top of that to parallelize 
across node boundaries. 

• SMP reduces the number of DMP domains. That can improve load balance and reduce DMP 
overhead. 

• With SMP it is easier to parallelize those leftover portions of the code that are still sequential. 

• SMP allows thread placement on cores with shared caches. As threads have common data 
spaces this can improve cache efficiency.  

Let’s call it SUD 
The acronym SUD is used to describe a hybrid SMP under DMP version of the chosen applications. 
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Definition of measurements 
Description of Intel based nodes 
Cluster nodes 
All subsequent tests were conducted on clusters of HP BladeSystem BL460c nodes. These nodes are 
equipped with 3.0 GHz processors, with either DC (Xeon 5160) or QC (Xeon 5365) chips. 
This platform was chosen because besides the processor all other system components are identical. 
Even the cache size per core is identical. The chipset is Intel “Blackford” with 2 busses connecting to 
each processor. The bus is clocked at 1333M transactions/sec. 

Cluster interconnect 
The cluster interconnect is made of latest generation Mellanox “ConnectX” InfiniBand HCA’s. These 
are connected to a 16-port InfiniBand switch blade within the blade enclosure. That switch blade has 
8 uplinks to the backbone switch. The entire InfiniBand infrastructure is running at 4X Double Data 
Rate, which makes 20 Mbits/sec.  

Detection of core numbering 
The numbering scheme for the cores as seen by the OS depends on BIOS settings and can differ 
between HW vendors even if the same processor type is used. In addition there are different 
numbering schemes for different OS’s like Linux and Windows.  

In the absence of reliable documentation it is recommended to use tools like Intel’s cpuinfo, which is 
part of Intel MPI but can be used standalone. The output of cpuinfo for Intel based BL460c cluster 
nodes looks as follows: 

Architecture  : x86_64 
Hyperthreading: disabled 
Packages   : 2 
Cores      : 8 
Processors : 8 
=====  Processor identification  ===== 
Processor       Thread  Core    Package 
0               0       0       0 
1               0       0       1 
2               0       2       0 
3               0       2       1 
4               0       1       0 
5               0       1       1 
6               0       3       0 
7               0       3       1 
=====  Processor placement  ===== 
Package Cores           Processors 
0       0,2,1,3         0,2,4,6 
1       0,2,1,3         1,3,5,7 
=====  Cache sharing  ===== 
Cache   Size            Processors 
L1      32  KB          no sharing 
L2      4   MB          (0,4)(1,5)(2,6)(3,7) 

Explicit process placement with HP-MPI 
HP-MPI provides a comprehensive set of process placement options through the  

 –cpu_bind=<options>   

command line switch. Details are outlined in the man-page for mpirun and in the HP-MPI release 
notes. 

Primary measurements on Intel based nodes 

The following measurements are designed for all DC and QC systems having 2 cores connected to a 
shared cache. This fits all current and near future Intel Xeon processors. 



9 

The Base: DMP on Dual Core Process Placement 

Resource Usage 

The overall goal is to tune for best possible performance gain 
of QC processors over DC processors. So the standard DMP 
version on DC processors defines the base for all subsequent 
tests. 

HP-MPI Settings: 

-np 4 –cpu_bind=v,rank 

 

 

 C1   C3  

 Cache  

 Bus IF  

 C0   C2  

 Cache  

 Bus IF  
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Step 1: DMP on Quad Core Process Placement 
Resource Usage 

This measurement uses the same number of nodes with QC 
instead of DC processors. So it quantifies the performance 
gain that is achieved by the doubled number of cores and 
cache size. It can be considered the pure hardware related 
gain factor. Depending on application and test case this can 
be below 1. 

HP-MPI Settings: 
-np 8 –cpu_bind=v,rank 

 

 

Step 2: DMP with Undersubscription on Quad Core Process Placement 
Resource Usage 

Undersubscription is the next approach, which still does not 
require source code modifications. It can be easily applied to 
any application, as it only requires correct process 
placement. This test uses only half of the cores but all of the 
cache. It can as well be considered a dual core test with 
doubled cache size. 

The ratio between the previous (Step 1) and this timing 
quantifies the gain factor that can be attributed to 
undersubscription. 

HP-MPI Settings: 
-np 4 –cpu_bind=v,rank 

 

 

Step 3: SUD with 2 Threads on same Cache on Quad Core Process Placement 
Resource Usage 

This test uses the same number of MPI ranks and the same 
process placement as in step 2. The only difference is that 
now the second core is activated by a second thread per MPI 
process. This allows us to precisely quantify the benefit of the 
second core without any noise by other effects.  

The ratio between the previous (Step 2) and this timing 
quantifies the gain factor that can be attributed to SUD 
parallelism. 

The ratio between the base timing and this timing quantifies 
the overall gain factor. 

HP-MPI Settings: 
-np 4 -cpu_bind=v,mask_cpu:11,22,44,88 

      -e MPI_THREAD_AFFINITY=packed 

 

 

 C1   C5   C3   C7  

  Cache     Cache   

 Bus IF  

 C0   C4   C2   C6  

  Cache     Cache   

 Bus IF  

 C1   C5   C3   C7  

 Bus IF  

 Cache   Cache   C0   C4   C2   C6  

 Bus IF  

 Cache   Cache  

 C1   C5   C3   C7  

 Bus IF  

 Cache   Cache   C0   C4   C2   C6  

 Bus IF  

 Cache   Cache  
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Supplementary Measurements on Intel based nodes 

The following tests were done to characterize SUD on DC nodes, to compare best case with worst-
case thread placement and to evaluate SUD with 4 Threads. 

 

SUD with 2 Threads on same Cache on DC nodes 
 

Process Placement 
Resource Usage 

The SUD version can also be applied on DC systems if they 
have shared caches. 

HP-MPI Settings: 
-np 2 -cpu_bind=v,mask_cpu:05,0A 
      -e MPI_THREAD_AFFINITY=packed 

 

 

SUD with 2 Threads on different Caches on QC nodes 
 

Process Placement 
Resource Usage 

This is the worst-case placement when using the SUD version. 
It was expected and actually confirmed by measurements that 
performance is 30% worse compared to the best-case thread 
placement. 

This confirms that thread placement on a common cache is 
mandatory to get good performance with the SUD versions. 

HP-MPI Settings: 
-np 4 -cpu_bind=v,mask_cpu:03,30,0C,C0 

      -e MPI_THREAD_AFFINITY=cyclic_cpu 

 

 

SUD with 4 Threads on common processor on QC nodes 
 

Process Placement 
Resource Usage 

This is a different scenario for the SUD version. This test uses 
4 threads per rank with threads placed within the same 
processor. 

Only in very few corner cases this mode achieves better 
results than with 2 threads. With LM_RAPS there is no such 
case. 

HP-MPI Settings: 
-np 2 -cpu_bind=v,mask_cpu:55,AA 

 

 

 C1   C5   C3   C7  

 Cache   Cache  

Bus 

 C0   C4   C2   C6  

 Cache   Cache  

 Bus IF  

 C1   C5   C3   C7  

 Bus IF  

 Cache   Cache   C0   C4   C2   C6  

 Bus IF  

 Cache   Cache  

C1 C3 

 Cache  

Bus IF 

C0 C2 

 Cache  

Bus IF 
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PAM-Crash DMP versus SUD performance 
Performance characterization 

PAM-Crash is available in both SMP and DMP versions. The most widely used version is DMP which 
scales fairly well up to 100 processors with most production test cases made of up to 1 million 
elements. Scalability up to 500 processors has been demonstrated with artificially large test cases 
made of 10 million elements [1]. 

PAM-Crash is quite sensitive to processor cache size and clock rate. Its memory bandwidth 
requirement is moderate. 

Building a SUD version 

Build environment 
PAM-Crash was built on a Linux platform using the Intel v10.0 Compiler with its built-in OpenMP 
capability. HP-MPI was used for the DMP part. 

Considerations around MPI thread-safety 
HP-MPI comes with a thread-safe version of its libraries. Having a close look at the application it 
turned out that this is not needed. Thread-safe MPI is only required if several threads make concurrent 
MPI calls. This is not the case. 

Source code modifications: None 
PAM-Crash is almost ready for production of an official SUD version. Since years the SMP and DMP 
versions are built from the same source base by selection of preprocessor switches. Experiments with 
a SUD version have been made earlier at ESI-Group and other hardware vendors [1]. 

PAM-Crash was built with both SMP and DMP preprocessor switches turned on. The resulting 
executable worked instantly. The only restriction applies to the implicit solver, which is only SMP 
parallel. But this is not a widely used feature so it did not inhibit any of the planned tests. 

Selection of test cases 

PAM-Crash data dependencies 
PAM-Crash test cases can have quite different scalability characteristics. This is caused by the ratio of 
shell to solid elements, the wealth of material models, the use of specific submodels like dummies, 
airbags and barriers. The change of geometry during the simulation also has an impact on 
performance. For these reasons PAM-Crash was tested with 6 different test cases, most of them are 
real customer data sets.  
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Description of the PAM-Crash test cases 

 
Table 1. PAM-Crash test cases 

Name 
Description 

 
Advanced Features 

 Number of 
Elements: 

Shells 
Solids 

Full 
simulation 
time 

Number of 
time steps 

Shortened 

simulation 
time 
 

Neon 
100% Frontal Crash 
 

none 
 

274000 
3000 

120 ms 
99900 

n/a 
 

Q2 
Pedestrian Impact 

 
Dummy Head 

 

632000 
22500 

30 ms 
42800 

n/a 
 

SMD 
Offset Deformable Barrier 
 
Dummies, Airbags, Belts 

 

660000 
41000 

140 ms 
144000 

n/a 
 

PST 
Offset Deformable Barrier 
 
Dummies, Belts 

 

768000 
40000 

100 ms 
100044 

n/a 
 

BMI 

Side Impact 
 
Dummies, Airbags, Belts 

 

697000 

73000 

90 ms 

100000 

30 ms 

 

Q5 
Side Impact 
 
Dummies, Airbags, Belts 

 

1592000 
140000 

130 ms 
134000 

20 ms 
 

 
Time linearity 
Each test case was first tested for its time linearity. That property describes the possibility of drawing 
meaningful conclusions from a shortened simulation. If time linearity is good this means that the 
dynamic behavior in terms of performance and load balance does not change much during a full test. 
That allows us to run tests with shortened simulation time. Just for verification a few runs are done with 
full simulation time. 
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Neon Measurements 

Elapsed times and SUD performance gain 

 
Figure 6. Neon elapsed times 

 

 
 

 
Table 2. Neon Performance gains over DC DMP 

  8 Nodes 16 Nodes 32 Nodes 

Additional Cores and Cache 1,39 1,33 1,05 
Undersubscription 0,83 0,96 1,24 
SUD Parallelism 1,36 1,36 1,26 
Overall gain 1,57 1,73 1,64 

 
Messaging analysis 

 
Figure 7. Neon Messaging Summary 

 

 
 



15 

 
Table 3. Neon Messaging Summary 

 32 Ranks 64 Ranks 128 Ranks 256 Ranks 

Message Count (millions) 43 89 184 363 

Message Volume (GB) 46 78 158 408 

 
Observations 

• The message count correlates linearly to the number of ranks.  
• The total message volume correlates linearly to the number of ranks up to 128 ranks. Above 

that threshold the increase becomes superlinear. 
• SUD extends scalability beyond 16 nodes by reducing the number of ranks down to a more 

efficient range. 

Q2 Measurements 

Elapsed times and SUD performance gain 

 
Figure 8. Q2 full simulation timings 

 

 
 

 
Table 4. Performance gains ever DC DMP with Q2 

  8 Nodes 16 Nodes 32 Nodes 

Additional Cores and Cache 1,23 0,91 0,96 

Undersubscription 0,89 1,18 1,19 

SUD Parallelism 1,26 1,14 1,19 

Overall gain 1,37 1,23 1,36 
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Messaging Analysis 

 
Figure 9. Q2 Messaging Summary 

 

 
 

 
Table 5. Q2 Messaging Summary 

 32 Ranks 64 Ranks 128 Ranks 256 Ranks 

Message Count (millions) 47 141 452 1588 

Message Volume (GB) 41 72 137 319 

 
Observations 

• The message count has an exponential correlation to the number of ranks. It is approximately 
an O(1.5n) function up to 128 ranks. Above that threshold it becomes worse. 

• The total message volume correlates linearly all the way up to 256 ranks. 
• Undersubscription and SUD improve scalability for large node counts by reducing the number 

of ranks down to a more efficient range. 
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SMD Measurements 

Elapsed times and SUD performance gain 

 
Figure 10. SMD full simulation timings 

 

 
 

 
Table 6. Performance gains over DC DMP with SMD 

  8 Nodes 16 Nodes 32 Nodes 

Additional Cores and Cache 1,25 1,08 1,05 

Undersubscription 0,96 1,37 1,93 

SUD Parallelism 1,19 1,17 1,13 

Overall gain 1,42 1,72 2,28 
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Messaging Analysis 

 
Figure 11. SMD Messaging Analysis 

 

 
 

 
Table 7. SMD Messaging Analysis 

 32 Ranks 64 Ranks 128 Ranks 256 Ranks 

Message Count (millions) 298 1010 3518 12873 

Message Volume (GB) 274 495 1364 3187 

 
 
Observations 

• The message count has an exponential correlation to the number of ranks. It is approximately 
a O(3n) function which is among the worst of all test cases. 

• The total message volume has a roughly linear correlation only up to 64 ranks. Above that it 
increases exponentially just like the message count. 

• Undersubscription and SUD yield enormous improvements by reducing the number of ranks 
down to a more efficient range. 

• SUD with 4 threads is doing exceptionally well for this case. Dividing the number of ranks by 
4 reduces the message count and volume by up to a factor of 10. 

• This test case is a corner case with extreme behavior. It must not be used for drawing general 
conclusions.   
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PST Measurements 

Elapsed times and SUD performance gain 

 
Figure 12. PST timings 

 

 
 

 
Table 8. Performance gains over DC DMP with PST 

  8 Nodes 16 Nodes 32 Nodes 64 Nodes 

Additional Cores and Cache 1,32 1,23 1,12 0,95 

Undersubscription 0,83 0,91 1,12 1,66 

SUD Parallelism 1,22 1,25 1,23 1,14 

Overall gain 1,35 1,39 1,54 1,80 
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Messaging analysis 

 
Figure 13. PST Messaging analysis 

 

 
 

 
Table 9. PST Messaging Analysis 

 32 
Ranks 

64 
Ranks 

128 
Ranks 

256 
Ranks 

512 
Ranks 

Message Count 
(millions) 

115 327 1053 3766 14075 

Message Volume 
(GB) 

151 306 752 2356 8373 

 
Observations 

• Up to 64 ranks the message count and volume grow linearly with the number of ranks. 
Above that threshold the correlation becomes exponential. 

• Undersubscription and SUD yield significant improvements above 16 nodes by reducing the 
number of ranks down to a more efficient range. 

• The scalability limit is extended from 32 to 64 nodes. 
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BMI Measurements 

Elapsed times and SUD performance gain 

 
Figure 14. BMI timings 

 

 
 

 
Table 10. Performance gains over DC DMP with BMI 

  8 Nodes 16 Nodes 32 Nodes 32 Nodes 

Additional Cores and Cache 1,37 1,22 0,97 0,75 

Undersubscription 0,79 0,94 1,15 1,49 

SUD Parallelism 1,25 1,24 1,17 1,08 

Overall gain 1,36 1,41 1,29 1,21 
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Messaging analysis 

 
Figure 15. BMI Messaging analysis 

 

 
 

 
Table 11. BMI Messaging analysis 

 32 
Ranks 

64 
Ranks 

128 
Ranks 

256 
Ranks 

512 
Ranks 

Message Count 
(millions) 

45 153 553 2094 8130 

Message Volume 
(GB) 

53 100 269 867 3153 

 
Observations 

• Both the message count and the volume have an exponential correlation to the number of 
ranks. It is approximately a O(3n) function which is among the worst of all test cases. 

• SUD yields substantial improvements by reducing the number of ranks down to a more 
efficient range. While some overhead is cut off the scalability limit of 32 nodes cannot be 
overcome. 

• Undersubscription only makes sense with 32 and more nodes. 
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Q5 Measurements 

Elapsed times and SUD performance gain 

 
Figure 16. Q5 timings 

 

 
 

 
Table 12. Performance gains over DC DMP with Q5 

  8 
Nodes 

16 
Nodes 

32 
Nodes 

64 
Nodes 

Additional Cores and Cache 1,32 1,26 1,11 0,53 

Undersubscription 0,79 0,86 1,20 2,12 

SUD Parallelism (2 or 4 
Threads) 

1,33 1,34 1,27 1,41 

Overall gain 1,39 1,45 1,70 1,58 
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Messaging analysis 

 
Figure 17. Q5 Messaging analysis 

 

 
 

 
Table 13. Q5 Messaging analysis 

 32 
Ranks 

64 
Ranks 

128 
Ranks 

256 
Ranks 

512 
Ranks 

Message Count 
(millions) 

54 193 632 2216 9694 

Message Volume 
(GB) 

139 355 1073 3807 14577 

 
Observations 

• Both the message count and the volume have an exponential correlation to the number of 
ranks. It is roughly a O(3n) function which is among the worst of all test cases. 

• SUD yields substantial improvements by reducing the number of ranks down to a more 
efficient range. Scalability for QC systems is extended from 16 to 32 nodes. SUD with 4 
threads even gets a bit better with 64 nodes. 

• Undersubscription only makes sense with 32 and more nodes. 
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Testing SUD on Dual-Core nodes 

Measurements 

 
Figure 18. Neon and Q2 on DC nodes 

 

 
 

 
Figure 19. SAMD and PST on DC nodes 

  

 
 

 
Figure 20. BMI and Q5 on DC nodes 
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Observations 
SUD can be used on DC nodes too. At low node counts there might be a slight slowdown in some 
cases. At high node counts there is always a clear advantage. It is not as clear as with QC nodes but 
it is still visible. 

With this observation the SUD version can be considered as a general solution for PAM-Crash on 
Multi-Core processors. 

Summary of PAM-Crash performance on Intel processors 

The SUD version is a valid approach to extend scalability of PAM-Crash by up to a factor of 2. This 
improvement is accomplished by a combination of effects: 

1. Some algorithms in PAM-Crash have an exponential increase in MPI overhead with large rank 
counts. Reducing the rank count with SUD gets them into a more efficient mode of operation. 
This is the main performance improvement by the SUD version. 

2. Placing 2 corresponding threads on the same shared cache is mandatory to achieve good 
performance. This placement increases the efficiency of the cache and minimizes coherency 
overhead. 

3. Some cases can make good use of SUD with 4 threads for large node counts. This mode should 
be even better on AMD Barcelona processors, which have the L2 cache, shared between 4 
cores. The test cases can be identified by their high percentage of “CONTACTS” time in the 
PAM-Crash internal time breakdown. 

4. In many cases the SUD version yields significant performance gains even for DC processors. 

5. Using the SUD version with 8 and less nodes does not yield any benefit but it does not hurt 
either. That makes it a viable general solution. 

Even if the SUD version should not become generally available then the DMP version in 
undersubscribed mode is an alternative. It is not always beneficial so it has to be applied selectively. 
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