

Abstract ... 2

Motivation.. 2

Situation in chip manufacturing ... 2

Challenges to software development .. 2

Amdahl’s law revisited ... 3

Scope and relevance ... 3

The world of multi core processors .. 4

Description of Intel based nodes (HP BladeSystem BL460c)... 4

Description of AMD based nodes (HP BladeSystem BL465c) ... 5

Summarizing the evolution from DC to QC processor generations ... 6

Discussion of some optimization approaches .. 6

Goal definition.. 6

Overlay of computation and file I/O a.k.a. Async I/O .. 6

Overlay of computation and communication ... 6

Undersubscription.. 7

Combining distributed and shared memory parallelism .. 7

Definition of measurements... 8

Primary measurements on Intel based nodes ... 8

Supplementary Measurements on Intel based nodes... 11

PAM-Crash DMP versus SUD performance ... 12

Performance characterization.. 12

Building a SUD version .. 12

Selection of test cases .. 12

Neon Measurements.. 14

Q2 Measurements ... 15

SMD Measurements... 17

PST Measurements... 19

BMI Measurements .. 21

Q5 Measurements ... 23

Testing SUD on Dual-Core nodes... 25

Summary of PAM-Crash performance on Intel processors ... 26

Appendix... 27

References.. 27

Credits ... 27

For more information ... 27

Applying SUD Parallelism to improve parallel efficiency of
ESI-Group PAM-Crash v2007 on multi-core processors

Michael Riedmann michael.riedmann@hp.com
HP European Performance Center, Böblingen, Germany
Revision 1.1, March 2008

2

Abstract
This investigation is part of the multi core optimization program initiated by HP’s High Performance
Computing Division. The purpose of this program is to explore ways to best utilize the power of multi
core processors with HPC applications.

The two HPC applications, one industrial and one scientific, which were chosen for this investigation,
have quite different performance characteristics. ESI-Group’s PAM-Crash is known for its moderate
memory load. It scales well with clock speed and cache size. The COSMO LM_RAPS weather model
is more demanding on memory bandwidth but is still sensitive to cache size.

The goal was to tune both applications to achieve the best possible speedup when migrating from a
dual core processor platform to a quad core processor with equal clock rates. This is the most
common challenge today.

This paper covers PAM-Crash only. The LM_RAPS part is covered by a separate paper [2].

Most current and all future multi core processors are sharing caches between multiple cores. Two
major approaches were tried to exploit this. First, the effect of undersubscription was measured, the
case where only half of the cores but all of the cache and bus resources are utilized. The second
approach was to combine DMP and SMP parallelism, called SUD, specifically the case when SMP
threads are placed on common caches.

The result is quite positive for both applications. The cumulated performance gain for PAM-Crash is in
the range of 1.3 to 1.7. The cumulated performance gain for LM_RAPS is around 1.3.
A number of effects contribute to these performance gains: First, the additional HW resources like the
doubled number of cores and cache size. Then, application usage is optimized by explicit process
placement. Finally there is a benefit from SUD parallelism.

All measurements were conducted on an Intel Xeon based system. They will be repeated on AMD
based quad core systems whenever they become available.

Motivation
Situation in chip manufacturing

Progress of processor manufacturing has apparently hit physical limits that inhibit further growth of
clock frequencies. Chipmakers have changed direction accordingly. Instead of clock rate increases
they now increase the number of processing units on a single chip. These processing units are called
cores; the chips are called multi core processors.

This approach sustains the illusion of Moore’s law delivering never-ending growth of compute
capacity. In the November 2007 Top500 list the positions 3, 4 and 5 are held by clusters based on
such multi core processors.

Challenges to software development

Increases of processor clock rate usually speeds up any HPC application without extra effort. But an
increased number of cores per chip at the same clock rate does not speed up sequential applications
at all. Nor does it help applications that have already reached the limits of their parallel efficiency.
Only those applications that have excellent parallel efficiency can further exploit the power of multi
core processors. So the challenges to software developers are:

• To start parallelizing sequential applications.
This challenge applies mainly to desktop applications where parallelism is not widely used.

• To work on improving efficiency and scalability of parallel applications.
Developers have to revisit their approaches to parallelism and pay more attention to the
remaining sequential portions in the code. This will also require better knowledge of the

3

system architecture. Optimizing for multi core processors is like optimizing for vector
processors: Only by adjustments in the source code can the full power be exploited.

Amdahl’s law revisited

Whenever a parallel program is tested with twice the usual number of processors then some common
observations are:

• The sequential portions of the code become more significant. That is particularly true for file
I/O.

• The overhead of parallelization increases. This includes all extra tasks like domain
decomposition, message passing, load balancing, and access of shared resources.
In many common cases the parallel overhead increases logarithmically with the number of
processors.

Figure 1. Example for scalability of a 90% efficient parallel application

Scope and relevance

Choice of applications
PAM-Crash was chosen simply because the author knows it very well and has conditional access to
the source code and its developers. Even more relevant is that this application is widely used in its
target market. PAM-Crash is used in the automotive and aircraft industry for impact, crash and
passenger safety simulation.

4

The world of multi core processors
Description of Intel based nodes (HP BladeSystem BL460c)

Figure 2. HP BladeSystem BL460c Node with DC Processors

Figure 3. HP BladeSystem BL460c Node with QC Processors

Notes on Intel based DC and QC nodes

• UMA architecture with all memory access going through the chip set.

• L2 caches are shared between 2 cores.

• L2 cache size is 2MB per core in both systems. The doubled number of cores also doubles
the total cache size.

5

• Cumulated bus bandwidth is identical in both systems. This means that QC systems have only
half the bus bandwidth per core so that performance issues may arise for memory intensive
applications.

Description of AMD based nodes (HP BladeSystem BL465c)

Figure 4. HP BladeSystem BL465c Node with DC Processors

Figure 5. HP BladeSystem BL465c Node with QC Processors (future product)

Notes on AMD based DC and QC nodes

• NUMA architecture with physically separated memory pools

• No cache sharing in DC processors,
L3 caches are shared between all cores in QC processors.

• Cumulated cache size is 1MB per core in both systems. The doubled number of cores also
doubles the total cache size.

• Cumulated bus bandwidth is identical in both systems. This means that QC systems have only
half the bus bandwidth per core so that performance issues may arise for memory intensive
applications.

6

Summarizing the evolution from DC to QC processor generations

The comparison of previous generation DC processors with the current QC generation can be
summarized as follows.

The bad news
• Clock rates have not increased.

• Bus bandwidth per core is divided by 2.

The good news
• The number of cores per chip and per system has doubled.

• The cache size per core is equal or has increased.

• L2 or L3 caches are shared between cores.

The challenges
• How to utilize the additional cores?

• How to work around the bus bandwidth reduction?

• How to handle shared caches?

Discussion of some optimization approaches
Goal definition

The goal is tuning the two applications to achieve the best possible speedup when migrating from a
dual core processor platform to a quad core processor with equal clock rates. This is the most
common challenge today.

Overlay of computation and file I/O a.k.a. Async I/O

Having abundant cores allows to even assign “part time” tasks to dedicated cores. The most common
example is asynchronous file I/O, e.g. output of restart files. These tasks might be idle 95% of their
time but they can reduce the percentage of sequential execution as referenced by Amdahl’s law.

This can be implemented explicitly within the application or it can be done by the operating system.
The most common approach in HPC is to implement it in the application as this avoids OS
dependencies and is likely to be more efficient.

Overlay of computation and communication

This idea can be applied to a small set of message passing applications. Assigning dedicated
resources to propagate messages makes sense whenever immediate synchronization is not required.
This means that a process has independent work to do while messages are propagated.

It can be implemented explicitly by using OpenMP or POSIX threads. In that case one or more threads
would continue to compute while another dedicated thread would do nothing but propagating
messages.

Implicit implementation can be realized within the messages passing interface. A great example is the
capability of HP-MPI, which can assign its activity to a dedicated thread. This behavior can be
controlled from the environment and requires no source code modifications. Effective implicit overlay
requires that messages are passed by nonblocking API calls, e.g. by using MPI_Isend and MPI_Irecv
and by placing the corresponding MPI_Waitall call as late as possible. Unfortunately very few
applications are written that way so that even implicit overlay requires source modifications before it
can become efficient.

7

Undersubscription

Undersubscription means that not all available cores are used. This approach is appropriate when
bus bandwidth is clearly insufficient to keep all cores busy. The positive effect of undersubscription in
combination with shared L2 caches is that idle cores yield their share of the L2 cache to the busy
cores.
This way it is possible to have a QC system perform significantly better than a DC system by just
doubling the effective cache size per busy core. It requires that compute processes are placed and
bound to cores appropriately.

Elegance is something different. One has to be quite desperate to work this way. Besides the extra
cache no other components of the processor are utilized. So this is a “better than nothing” type of
approach.

Combining distributed and shared memory parallelism

Almost forgotten: SMP
Shared Memory Programming (SMP) has gone out of fashion in recent years for a number of reasons.

1. SMP was often used for quick and dirty parallelization of legacy codes. That approach yields
only moderate scalability as long as no major effort is spent for true reengineering.
Consequently SMP got the reputation of being somewhat inefficient.

2. Some supercomputer architectures are purely DMP capable and unable to run SMP
applications.

3. The promise of cheap clusters made of thin industry standard servers has led many
developers to exclusively go for Distributed Memory Programming (DMP) and abandon the
initial SMP versions.

4. The most popular types of cluster nodes used to have no more than 1 or 2 processors so there
was no point in considering SMP.

5. All future implementations of major processor types like Intel Xeon, Intel Itanium and AMD
Opteron will be NUMA architectures. SMP parallelism as done with OpenMP is difficult to
optimize for memory locality on NUMA systems.

The downsides of DMP
DMP yields good scalability for many applications. But there are tradeoffs and costs.

• Efficient DMP requires complete reengineering of the source code.

• DMP introduces extra overhead for domain decomposition and message passing. The
overhead usually grows with the number of domains.

• The quality of domain decompositions gets worse when the number of domains is increased
and thus introduces load imbalance. Dynamic load balancing e.g. domain resizing at
runtime is extremely difficult to implement. In many applications this is not available at all.

• DMP process data spaces are disjoint. There is no way to utilize shared caches.

How can SMP underneath DMP help ?
SMP can be used to parallelize within a node, within a multi core processor, within the scope of a
shared cache or within the scope of a NUMA node. DMP can be used on top of that to parallelize
across node boundaries.

• SMP reduces the number of DMP domains. That can improve load balance and reduce DMP
overhead.

• With SMP it is easier to parallelize those leftover portions of the code that are still sequential.

• SMP allows thread placement on cores with shared caches. As threads have common data
spaces this can improve cache efficiency.

Let’s call it SUD
The acronym SUD is used to describe a hybrid SMP under DMP version of the chosen applications.

8

Definition of measurements
Description of Intel based nodes
Cluster nodes
All subsequent tests were conducted on clusters of HP BladeSystem BL460c nodes. These nodes are
equipped with 3.0 GHz processors, with either DC (Xeon 5160) or QC (Xeon 5365) chips.
This platform was chosen because besides the processor all other system components are identical.
Even the cache size per core is identical. The chipset is Intel “Blackford” with 2 busses connecting to
each processor. The bus is clocked at 1333M transactions/sec.

Cluster interconnect
The cluster interconnect is made of latest generation Mellanox “ConnectX” InfiniBand HCA’s. These
are connected to a 16-port InfiniBand switch blade within the blade enclosure. That switch blade has
8 uplinks to the backbone switch. The entire InfiniBand infrastructure is running at 4X Double Data
Rate, which makes 20 Mbits/sec.

Detection of core numbering
The numbering scheme for the cores as seen by the OS depends on BIOS settings and can differ
between HW vendors even if the same processor type is used. In addition there are different
numbering schemes for different OS’s like Linux and Windows.

In the absence of reliable documentation it is recommended to use tools like Intel’s cpuinfo, which is
part of Intel MPI but can be used standalone. The output of cpuinfo for Intel based BL460c cluster
nodes looks as follows:

Architecture : x86_64
Hyperthreading: disabled
Packages : 2
Cores : 8
Processors : 8
===== Processor identification =====
Processor Thread Core Package
0 0 0 0
1 0 0 1
2 0 2 0
3 0 2 1
4 0 1 0
5 0 1 1
6 0 3 0
7 0 3 1
===== Processor placement =====
Package Cores Processors
0 0,2,1,3 0,2,4,6
1 0,2,1,3 1,3,5,7
===== Cache sharing =====
Cache Size Processors
L1 32 KB no sharing
L2 4 MB (0,4)(1,5)(2,6)(3,7)

Explicit process placement with HP-MPI
HP-MPI provides a comprehensive set of process placement options through the

 –cpu_bind=<options>

command line switch. Details are outlined in the man-page for mpirun and in the HP-MPI release
notes.

Primary measurements on Intel based nodes

The following measurements are designed for all DC and QC systems having 2 cores connected to a
shared cache. This fits all current and near future Intel Xeon processors.

9

The Base: DMP on Dual Core Process Placement

Resource Usage

The overall goal is to tune for best possible performance gain
of QC processors over DC processors. So the standard DMP
version on DC processors defines the base for all subsequent
tests.

HP-MPI Settings:

-np 4 –cpu_bind=v,rank

 C1 C3

 Cache

 Bus IF

 C0 C2

 Cache

 Bus IF

10

Step 1: DMP on Quad Core Process Placement
Resource Usage

This measurement uses the same number of nodes with QC
instead of DC processors. So it quantifies the performance
gain that is achieved by the doubled number of cores and
cache size. It can be considered the pure hardware related
gain factor. Depending on application and test case this can
be below 1.

HP-MPI Settings:
-np 8 –cpu_bind=v,rank

Step 2: DMP with Undersubscription on Quad Core Process Placement
Resource Usage

Undersubscription is the next approach, which still does not
require source code modifications. It can be easily applied to
any application, as it only requires correct process
placement. This test uses only half of the cores but all of the
cache. It can as well be considered a dual core test with
doubled cache size.

The ratio between the previous (Step 1) and this timing
quantifies the gain factor that can be attributed to
undersubscription.

HP-MPI Settings:
-np 4 –cpu_bind=v,rank

Step 3: SUD with 2 Threads on same Cache on Quad Core Process Placement
Resource Usage

This test uses the same number of MPI ranks and the same
process placement as in step 2. The only difference is that
now the second core is activated by a second thread per MPI
process. This allows us to precisely quantify the benefit of the
second core without any noise by other effects.

The ratio between the previous (Step 2) and this timing
quantifies the gain factor that can be attributed to SUD
parallelism.

The ratio between the base timing and this timing quantifies
the overall gain factor.

HP-MPI Settings:
-np 4 -cpu_bind=v,mask_cpu:11,22,44,88

 -e MPI_THREAD_AFFINITY=packed

 C1 C5 C3 C7

 Cache Cache

 Bus IF

 C0 C4 C2 C6

 Cache Cache

 Bus IF

 C1 C5 C3 C7

 Bus IF

 Cache Cache C0 C4 C2 C6

 Bus IF

 Cache Cache

 C1 C5 C3 C7

 Bus IF

 Cache Cache C0 C4 C2 C6

 Bus IF

 Cache Cache

11

Supplementary Measurements on Intel based nodes

The following tests were done to characterize SUD on DC nodes, to compare best case with worst-
case thread placement and to evaluate SUD with 4 Threads.

SUD with 2 Threads on same Cache on DC nodes

Process Placement
Resource Usage

The SUD version can also be applied on DC systems if they
have shared caches.

HP-MPI Settings:
-np 2 -cpu_bind=v,mask_cpu:05,0A
 -e MPI_THREAD_AFFINITY=packed

SUD with 2 Threads on different Caches on QC nodes

Process Placement
Resource Usage

This is the worst-case placement when using the SUD version.
It was expected and actually confirmed by measurements that
performance is 30% worse compared to the best-case thread
placement.

This confirms that thread placement on a common cache is
mandatory to get good performance with the SUD versions.

HP-MPI Settings:
-np 4 -cpu_bind=v,mask_cpu:03,30,0C,C0

 -e MPI_THREAD_AFFINITY=cyclic_cpu

SUD with 4 Threads on common processor on QC nodes

Process Placement
Resource Usage

This is a different scenario for the SUD version. This test uses
4 threads per rank with threads placed within the same
processor.

Only in very few corner cases this mode achieves better
results than with 2 threads. With LM_RAPS there is no such
case.

HP-MPI Settings:
-np 2 -cpu_bind=v,mask_cpu:55,AA

 C1 C5 C3 C7

 Cache Cache

Bus

 C0 C4 C2 C6

 Cache Cache

 Bus IF

 C1 C5 C3 C7

 Bus IF

 Cache Cache C0 C4 C2 C6

 Bus IF

 Cache Cache

C1 C3

 Cache

Bus IF

C0 C2

 Cache

Bus IF

12

PAM-Crash DMP versus SUD performance
Performance characterization

PAM-Crash is available in both SMP and DMP versions. The most widely used version is DMP which
scales fairly well up to 100 processors with most production test cases made of up to 1 million
elements. Scalability up to 500 processors has been demonstrated with artificially large test cases
made of 10 million elements [1].

PAM-Crash is quite sensitive to processor cache size and clock rate. Its memory bandwidth
requirement is moderate.

Building a SUD version

Build environment
PAM-Crash was built on a Linux platform using the Intel v10.0 Compiler with its built-in OpenMP
capability. HP-MPI was used for the DMP part.

Considerations around MPI thread-safety
HP-MPI comes with a thread-safe version of its libraries. Having a close look at the application it
turned out that this is not needed. Thread-safe MPI is only required if several threads make concurrent
MPI calls. This is not the case.

Source code modifications: None
PAM-Crash is almost ready for production of an official SUD version. Since years the SMP and DMP
versions are built from the same source base by selection of preprocessor switches. Experiments with
a SUD version have been made earlier at ESI-Group and other hardware vendors [1].

PAM-Crash was built with both SMP and DMP preprocessor switches turned on. The resulting
executable worked instantly. The only restriction applies to the implicit solver, which is only SMP
parallel. But this is not a widely used feature so it did not inhibit any of the planned tests.

Selection of test cases

PAM-Crash data dependencies
PAM-Crash test cases can have quite different scalability characteristics. This is caused by the ratio of
shell to solid elements, the wealth of material models, the use of specific submodels like dummies,
airbags and barriers. The change of geometry during the simulation also has an impact on
performance. For these reasons PAM-Crash was tested with 6 different test cases, most of them are
real customer data sets.

13

Description of the PAM-Crash test cases

Table 1. PAM-Crash test cases

Name
Description

Advanced Features

 Number of
Elements:

Shells
Solids

Full
simulation
time

Number of
time steps

Shortened

simulation
time

Neon
100% Frontal Crash

none

274000
3000

120 ms
99900

n/a

Q2
Pedestrian Impact

Dummy Head

632000
22500

30 ms
42800

n/a

SMD
Offset Deformable Barrier

Dummies, Airbags, Belts

660000
41000

140 ms
144000

n/a

PST
Offset Deformable Barrier

Dummies, Belts

768000
40000

100 ms
100044

n/a

BMI

Side Impact

Dummies, Airbags, Belts

697000

73000

90 ms

100000

30 ms

Q5
Side Impact

Dummies, Airbags, Belts

1592000
140000

130 ms
134000

20 ms

Time linearity
Each test case was first tested for its time linearity. That property describes the possibility of drawing
meaningful conclusions from a shortened simulation. If time linearity is good this means that the
dynamic behavior in terms of performance and load balance does not change much during a full test.
That allows us to run tests with shortened simulation time. Just for verification a few runs are done with
full simulation time.

14

Neon Measurements

Elapsed times and SUD performance gain

Figure 6. Neon elapsed times

Table 2. Neon Performance gains over DC DMP

 8 Nodes 16 Nodes 32 Nodes

Additional Cores and Cache 1,39 1,33 1,05
Undersubscription 0,83 0,96 1,24
SUD Parallelism 1,36 1,36 1,26
Overall gain 1,57 1,73 1,64

Messaging analysis

Figure 7. Neon Messaging Summary

15

Table 3. Neon Messaging Summary

 32 Ranks 64 Ranks 128 Ranks 256 Ranks

Message Count (millions) 43 89 184 363

Message Volume (GB) 46 78 158 408

Observations

• The message count correlates linearly to the number of ranks.
• The total message volume correlates linearly to the number of ranks up to 128 ranks. Above

that threshold the increase becomes superlinear.
• SUD extends scalability beyond 16 nodes by reducing the number of ranks down to a more

efficient range.

Q2 Measurements

Elapsed times and SUD performance gain

Figure 8. Q2 full simulation timings

Table 4. Performance gains ever DC DMP with Q2

 8 Nodes 16 Nodes 32 Nodes

Additional Cores and Cache 1,23 0,91 0,96

Undersubscription 0,89 1,18 1,19

SUD Parallelism 1,26 1,14 1,19

Overall gain 1,37 1,23 1,36

16

Messaging Analysis

Figure 9. Q2 Messaging Summary

Table 5. Q2 Messaging Summary

 32 Ranks 64 Ranks 128 Ranks 256 Ranks

Message Count (millions) 47 141 452 1588

Message Volume (GB) 41 72 137 319

Observations

• The message count has an exponential correlation to the number of ranks. It is approximately
an O(1.5n) function up to 128 ranks. Above that threshold it becomes worse.

• The total message volume correlates linearly all the way up to 256 ranks.
• Undersubscription and SUD improve scalability for large node counts by reducing the number

of ranks down to a more efficient range.

17

SMD Measurements

Elapsed times and SUD performance gain

Figure 10. SMD full simulation timings

Table 6. Performance gains over DC DMP with SMD

 8 Nodes 16 Nodes 32 Nodes

Additional Cores and Cache 1,25 1,08 1,05

Undersubscription 0,96 1,37 1,93

SUD Parallelism 1,19 1,17 1,13

Overall gain 1,42 1,72 2,28

18

Messaging Analysis

Figure 11. SMD Messaging Analysis

Table 7. SMD Messaging Analysis

 32 Ranks 64 Ranks 128 Ranks 256 Ranks

Message Count (millions) 298 1010 3518 12873

Message Volume (GB) 274 495 1364 3187

Observations

• The message count has an exponential correlation to the number of ranks. It is approximately
a O(3n) function which is among the worst of all test cases.

• The total message volume has a roughly linear correlation only up to 64 ranks. Above that it
increases exponentially just like the message count.

• Undersubscription and SUD yield enormous improvements by reducing the number of ranks
down to a more efficient range.

• SUD with 4 threads is doing exceptionally well for this case. Dividing the number of ranks by
4 reduces the message count and volume by up to a factor of 10.

• This test case is a corner case with extreme behavior. It must not be used for drawing general
conclusions.

19

PST Measurements

Elapsed times and SUD performance gain

Figure 12. PST timings

Table 8. Performance gains over DC DMP with PST

 8 Nodes 16 Nodes 32 Nodes 64 Nodes

Additional Cores and Cache 1,32 1,23 1,12 0,95

Undersubscription 0,83 0,91 1,12 1,66

SUD Parallelism 1,22 1,25 1,23 1,14

Overall gain 1,35 1,39 1,54 1,80

20

Messaging analysis

Figure 13. PST Messaging analysis

Table 9. PST Messaging Analysis

 32
Ranks

64
Ranks

128
Ranks

256
Ranks

512
Ranks

Message Count
(millions)

115 327 1053 3766 14075

Message Volume
(GB)

151 306 752 2356 8373

Observations

• Up to 64 ranks the message count and volume grow linearly with the number of ranks.
Above that threshold the correlation becomes exponential.

• Undersubscription and SUD yield significant improvements above 16 nodes by reducing the
number of ranks down to a more efficient range.

• The scalability limit is extended from 32 to 64 nodes.

21

BMI Measurements

Elapsed times and SUD performance gain

Figure 14. BMI timings

Table 10. Performance gains over DC DMP with BMI

 8 Nodes 16 Nodes 32 Nodes 32 Nodes

Additional Cores and Cache 1,37 1,22 0,97 0,75

Undersubscription 0,79 0,94 1,15 1,49

SUD Parallelism 1,25 1,24 1,17 1,08

Overall gain 1,36 1,41 1,29 1,21

22

Messaging analysis

Figure 15. BMI Messaging analysis

Table 11. BMI Messaging analysis

 32
Ranks

64
Ranks

128
Ranks

256
Ranks

512
Ranks

Message Count
(millions)

45 153 553 2094 8130

Message Volume
(GB)

53 100 269 867 3153

Observations

• Both the message count and the volume have an exponential correlation to the number of
ranks. It is approximately a O(3n) function which is among the worst of all test cases.

• SUD yields substantial improvements by reducing the number of ranks down to a more
efficient range. While some overhead is cut off the scalability limit of 32 nodes cannot be
overcome.

• Undersubscription only makes sense with 32 and more nodes.

23

Q5 Measurements

Elapsed times and SUD performance gain

Figure 16. Q5 timings

Table 12. Performance gains over DC DMP with Q5

 8
Nodes

16
Nodes

32
Nodes

64
Nodes

Additional Cores and Cache 1,32 1,26 1,11 0,53

Undersubscription 0,79 0,86 1,20 2,12

SUD Parallelism (2 or 4
Threads)

1,33 1,34 1,27 1,41

Overall gain 1,39 1,45 1,70 1,58

24

Messaging analysis

Figure 17. Q5 Messaging analysis

Table 13. Q5 Messaging analysis

 32
Ranks

64
Ranks

128
Ranks

256
Ranks

512
Ranks

Message Count
(millions)

54 193 632 2216 9694

Message Volume
(GB)

139 355 1073 3807 14577

Observations

• Both the message count and the volume have an exponential correlation to the number of
ranks. It is roughly a O(3n) function which is among the worst of all test cases.

• SUD yields substantial improvements by reducing the number of ranks down to a more
efficient range. Scalability for QC systems is extended from 16 to 32 nodes. SUD with 4
threads even gets a bit better with 64 nodes.

• Undersubscription only makes sense with 32 and more nodes.

25

Testing SUD on Dual-Core nodes

Measurements

Figure 18. Neon and Q2 on DC nodes

Figure 19. SAMD and PST on DC nodes

Figure 20. BMI and Q5 on DC nodes

26

Observations
SUD can be used on DC nodes too. At low node counts there might be a slight slowdown in some
cases. At high node counts there is always a clear advantage. It is not as clear as with QC nodes but
it is still visible.

With this observation the SUD version can be considered as a general solution for PAM-Crash on
Multi-Core processors.

Summary of PAM-Crash performance on Intel processors

The SUD version is a valid approach to extend scalability of PAM-Crash by up to a factor of 2. This
improvement is accomplished by a combination of effects:

1. Some algorithms in PAM-Crash have an exponential increase in MPI overhead with large rank
counts. Reducing the rank count with SUD gets them into a more efficient mode of operation.
This is the main performance improvement by the SUD version.

2. Placing 2 corresponding threads on the same shared cache is mandatory to achieve good
performance. This placement increases the efficiency of the cache and minimizes coherency
overhead.

3. Some cases can make good use of SUD with 4 threads for large node counts. This mode should
be even better on AMD Barcelona processors, which have the L2 cache, shared between 4
cores. The test cases can be identified by their high percentage of “CONTACTS” time in the
PAM-Crash internal time breakdown.

4. In many cases the SUD version yields significant performance gains even for DC processors.

5. Using the SUD version with 8 and less nodes does not yield any benefit but it does not hurt
either. That makes it a viable general solution.

Even if the SUD version should not become generally available then the DMP version in
undersubscribed mode is an alternative. It is not always beneficial so it has to be applied selectively.

Appendix
References

[1] Feyereisen, M.: Presentation on PAM-Crash SUD performance at 2007 Detroit CAE Symposium
[2] Riedmann, M., 2008: “Applying SUD Parallelism to improve parallel Efficiency of COSMO/DWD
LM_RAPS 4.0 on Multi-Core Processors”

Credits

Thanks to Laurent Duhem (Intel) and Thorsten Queckbörner (ESI-Group) for their valuable application
support and their suggestions during this investigation.

For more information
PAM-Crash

www.esi-group.com/SimulationSoftware/NumericalSimulation/index_html

HP High Performance Computing

www.hp.com/go/hptc
HP-MPI

www.hp.com/go/mpi
Intel cpuinfo as part of Intel MPI

http://www.intel.com/cd/software/products/asmo-na/eng/308295.htm

© Copyright 2008 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. HP shall not be liable for technical or editorial
errors or omissions contained herein.

Linux is a U.S. registered trademark of Linus Torvalds. Microsoft and Windows are
U.S. registered trademarks of Microsoft Corporation. UNIX is a registered
trademark of The Open Group.

4AA1-xxxxENW, May 2008

